SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oikonen V.) "

Sökning: WFRF:(Oikonen V.)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hirvonen, J, et al. (författare)
  • Measurement of striatal and extrastriatal dopamine transporter binding with high-resolution PET and [11C]PE2I: quantitative modeling and test-retest reproducibility
  • 2008
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X. ; 28:5, s. 1059-1069
  • Tidskriftsartikel (refereegranskat)abstract
    • [11C]PE2I is a novel positron emission tomography (PET) radiotracer for the dopamine transporter (DAT). The reproducibility and reliability of [11C]PE2I measurements, especially in the small DAT-rich brain regions, is unknown and of critical importance to the interpretation of the data. Five healthy volunteers were scanned twice during the same day using [11C]PE2I and the HRRT PET scanner. Methods based on metabolite-corrected arterial plasma curve and reference region were used to estimate distribution volumes ( VT) and binding potential ( BP). Within-subject and between-subject variabilities were compared. [11C]PE2I accumulated in the DAT-rich striatum and the midbrain. Equilibrium of specific binding appeared late in the striatum, whereas it was reached earlier in the midbrain. Plasma metabolite analysis showed that the potentially brain-penetrant 4-hydroxymethyl metabolite represented 15% to 20% of total plasma radioactivity. VT and BP measurements were associated with low within-subject variability. Measurement of DAT binding in small brain regions, including the substantia nigra, is reproducible and reliable using [11C]PE2I and high-resolution research tomograph. A scanning time of more than 70 mins is required for the striatum, while less is sufficient for DAT quantification in the midbrain. The previously suggested involvement of the potentially brain-penetrant radioactive metabolite in the quantification should be further studied.
  •  
3.
  •  
4.
  • Snellman, Anniina, et al. (författare)
  • ASIC-E4: Interplay of Beta-Amyloid, Synaptic Density and Neuroinflammation in Cognitively Normal Volunteers With Three Levels of Genetic Risk for Late-Onset Alzheimer's Disease - Study Protocol and Baseline Characteristics
  • 2022
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:& nbsp;Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study ( "Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE epsilon 4 carriers ") combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (A beta) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD.& nbsp;Objective:& nbsp;Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study.& nbsp;Methods/Design:& nbsp;ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60-75-year-old-individuals with known APOE epsilon 4/epsilon 4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE epsilon 4/epsilon 4, N = 19; Group 2: APOE epsilon 4/epsilon 3, N = 22; Group 3: APOE epsilon 3/epsilon 3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against A beta deposition (C-11-PIB), activated glia (C-11-PK11195) and synaptic vesicle glycoprotein 2A (C-11-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period.& nbsp;Discussion:& nbsp;Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and A beta in "at-risk " individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond A beta.
  •  
5.
  •  
6.
  • Golla, Sandeep S V, et al. (författare)
  • Parametric Binding Images of the TSPO Ligand 18F-DPA-714.
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:10, s. 1543-1547
  • Tidskriftsartikel (refereegranskat)abstract
    • (18)F-labeled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide (DPA-714) is a radioligand for the 18-kDa translocator protein. The purpose of the present study was to identify the best method for generating quantitative parametric images of (18)F-DPA-714 binding.METHODS: Ninety-minute dynamic (18)F-DPA-714 PET scans with full arterial sampling from 6 healthy subjects and 9 Alzheimer disease (AD) patients were used. Plasma-input-based Logan graphical analysis and spectral analysis were used to generate parametric volume of distribution (VT) images. Five versions of Ichise, reference Logan, and 2 basis function implementations (receptor parametric mapping and simplified reference tissue model 2 [SRTM2]) of SRTM, all using gray matter cerebellum as the reference region, were applied to generate nondisplaceable binding potential (BPND) images.RESULTS: Plasma-input Logan analysis (r(2) = 0.99; slope, 0.88) and spectral analysis (r(2) = 0.99, slope, 0.93) generated estimates of VT that correlated well with values obtained using nonlinear regression. BPND values generated using SRTM2 (r(2) = 0.83; slope, 0.95) and reference Logan analysis (r(2) = 0.88; slope, 1.01) correlated well with nonlinear regression-based estimates.CONCLUSION: Both Logan analysis and spectral analysis can be used to obtain quantitatively accurate VT images of (18)F-DPA-714. In addition, SRTM2 and reference Logan analysis can provide accurate BPND images. These parametric images could be used for voxel-based comparisons.
  •  
7.
  • Golla, Sandeep S V, et al. (författare)
  • Quantification of [18F]DPA-714 binding in the human brain : initial studies in healthy controls and Alzheimer's disease patients
  • 2015
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 35:5, s. 766-772
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorine-18 labelled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide ([(18)F]DPA-714) binds to the 18-kDa translocator protein (TSPO) with high affinity. The aim of this initial methodological study was to develop a plasma input tracer kinetic model for quantification of [(18)F]DPA-714 binding in healthy subjects and Alzheimer's disease (AD) patients, and to provide a preliminary assessment whether there is a disease-related signal. Ten AD patients and six healthy subjects underwent a dynamic positron emission tomography (PET) study along with arterial sampling and a scan protocol of 150 minutes after administration of 250 ± 10 MBq [(18)F]DPA-714. The model that provided the best fits to tissue time activity curves (TACs) was selected based on Akaike Information Criterion and F-test. The reversible two tissue compartment plasma input model with blood volume parameter was the preferred model for quantification of [(18)F]DPA-714 kinetics, irrespective of scan duration, volume of interest, and underlying volume of distribution (VT). Simplified reference tissue model (SRTM)-derived binding potential (BPND) using cerebellar gray matter as reference tissue correlated well with plasma input-based distribution volume ratio (DVR). These data suggest that [(18)F]DPA-714 cannot be used for separating individual AD patients from healthy subjects, but further studies including TSPO binding status are needed to substantiate these findings.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Pham, T. T., et al. (författare)
  • Human Bone Marrow Adipose Tissue is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot
  • 2020
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:7, s. 2300-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Bone marrow (BM) in adult long bones is rich in adipose tissue, but the functions of BM adipocytes are largely unknown. We set out to elucidate the metabolic and molecular characteristics of BM adipose tissue (BMAT) in humans. OBJECTIVE: Our aim was to determine if BMAT is an insulin-sensitive tissue, and whether the insulin sensitivity is altered in obesity or type 2 diabetes (T2DM). DESIGN: This was a cross-sectional and longitudinal study. SETTING: The study was conducted in a clinical research center. PATIENTS OR OTHER PARTICIPANTS: Bone marrow adipose tissue glucose uptake (GU) was assessed in 23 morbidly obese subjects (9 with T2DM) and 9 healthy controls with normal body weight. In addition, GU was assessed in another 11 controls during cold exposure. Bone marrow adipose tissue samples for molecular analyses were collected from non-DM patients undergoing knee arthroplasty. INTERVENTION(S): Obese subjects were assessed before and 6 months after bariatric surgery and controls at 1 time point. MAIN OUTCOME MEASURE: We used positron emission tomography imaging with 2-[18F]fluoro-2-deoxy-D-glucose tracer to characterize GU in femoral and vertebral BMAT. Bone marrow adipose tissue molecular profile was assessed using quantitative RT-PCR. RESULTS: Insulin enhances GU in human BMAT. Femoral BMAT insulin sensitivity was impaired in obese patients with T2DM compared to controls, but it improved after bariatric surgery. Furthermore, gene expression analysis revealed that BMAT was distinct from brown and white adipose tissue. CONCLUSIONS: Bone marrow adipose tissue is a metabolically active, insulin-sensitive and molecularly distinct fat depot that may play a role in whole body energy metabolism. © Endocrine Society 2020.
  •  
16.
  •  
17.
  • Virta, J, et al. (författare)
  • Impact of metabolic substrate modification on myocardial efficiency in a rat model of obesity and diabetes
  • 2022
  • Ingår i: European Heart Journal, Supplement. - : Oxford University Press (OUP). - 1520-765X .- 0195-668X .- 1522-9645. ; 43:2, s. 3076-3076
  • Konferensbidrag (refereegranskat)abstract
    • BackgroundCongenic leptin receptor deficient rat generated by introgression of the Koletsky leptin receptor mutation into BioBreeding Diabetes Resistant rat (BBDR.lepr−/−) is a novel animal model combining obesity, systemic insulin resistance and diabetes. Systemic insulin resistance is associated with reduced myocardial glucose utilization, but its effect on myocardial external efficiency, i.e. the ability of the myocardium to convert energy into external stroke work, remains uncertain.PurposeTo characterize cardiac energy metabolism and function in BBDR.lepr−/− rats and to study the effect of dipeptidyl peptidase 4 (DPP-4) inhibitor linagliptin in this model.MethodsCardiac phenotype was evaluated in six-month-old male BBDR.lepr−/− rats (n=11) and age-matched male non-diabetic lean control littermates (BBDR.lepr+/− or BBDR.lepr+/+ rats, n=14). Of these, 7 BBDR.lepr−/− rats and 6 controls underwent cardiac ultrasound, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), and [11C]acetate PET in order to evaluate cardiac structure and function as well as glucose and oxidative metabolism. In the remaining rats, fatty acid metabolism was evaluated by [18F]fluorothia-6-heptadecanoic acid ([18F]FTHA) PET/CT. In the linagliptin intervention study, 25 BBDR.lepr−/− male rats were randomly divided into control group (n=11) that received regular chow diet and linagliptin group (n=14) that received linagliptin (10mg/kg/d) mixed in the chow diet for three months. After the intervention, the rats underwent cardiac ultrasound, [18F]FDG PET/CT, and [11C]acetate PET.ResultsCompared with controls, BBDR.lepr−/− rats showed increased left ventricle (LV) mass (∼40%, p>0.001) and higher systolic blood pressure (∼10%, p=0.02). However, fractional shortening and cardiac output were similar in both groups. Myocardial fractional uptake rate of glucose measured with [18F]FDG PET was significantly reduced (∼86%, p=0.004) (Fig. 1A, E), whereas myocardial fatty acid uptake measured by [18F]FTHA PET was not significantly increased (free fatty acid (FFA) corrected standardized uptake value (SUV) ∼21%, p=0.54) (Fig. 1B) in BBDR.lepr−/− compared to controls. Myocardial oxygen consumption assessed by [11C]acetate PET was similar in both groups (Fig. 1C, E), but LV work per gram of myocardium was reduced (∼28%, p=0.001) resulting in reduced myocardial external efficiency (∼21%, p=0.03) (Fig. 1D) in BBDR.lepr−/− compared to controls. Treatment with linagliptin significantly enhanced myocardial fractional uptake rate of glucose (∼166%, p=0.006) (Fig. 2A, C), but had no effect on efficiency of cardiac work (Fig. 2B).ConclusionsObese and diabetic BBDR.lepr−/− rats demonstrate LV hypertrophy and markedly reduced myocardial glucose utilization associated with impaired myocardial external efficiency despite normal LV systolic function. Enhancement of myocardial glucose uptake by linagliptin did not improve efficiency of cardiac work.Funding AcknowledgementType of funding sources: Public grant(s) – EU funding. Main funding source(s): IMI-SUMMIT
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy