SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ojansivu Miina) "

Sökning: WFRF:(Ojansivu Miina)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bost, Jeremy P., et al. (författare)
  • Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides
  • 2022
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs.
  •  
2.
  • Ojansivu, Miina, et al. (författare)
  • Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
  • 2019
  • Ingår i: Biofabrication. - : Institute of Physics Publishing (IOPP). - 1758-5082 .- 1758-5090. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A challenge in the extrusion-based bioprinting is to find a bioink with optimal biological and physicochemical properties. The aim of this study was to evaluate the influence of wood-based cellulose nanofibrils (CNF) and bioactive glass (BaG) on the rheological properties of gelatin-alginate bioinks and the initial responses ofbone cells embedded in these inks. CNF modulated the flow behavior of the hydrogels, thus improving their printability. Chemical characterization by SEM-EDX and ion release analysis confirmed the reactivity of the BaG in the hydrogels. The cytocompatibility of the hydrogels was shown to be good, as evidenced by the viability of human osteoblast-like cells (Saos-2) in cast hydrogels. For bioprinting, 4-layer structures were printed from cell-containing gels and crosslinked with CaCl2. Viability, proliferation and alkaline phosphatase activity (ALP) were monitored over 14 d. In the BaG-free gels, Saos-2 cells remained viable, but in the presence of BaG the viability and proliferation decreased in correlation with the increased viscosity. Still, there was a constant increase in the ALP activity in all the hydrogels. Further bioprinting experiments were conducted using human bone marrow-derived mesenchymal stem cells (hBMSCs), a clinically relevant cell type. Interestingly, hBMSCs tolerated the printing process better than Saos-2 cells and the ALP indicated BaG-stimulated early osteogenic commitment. The addition of CNF and BaG to gelatin-alginate bioinks holds great potential for bone tissue engineering applications.
  •  
3.
  • ovrebo, Oystein, et al. (författare)
  • RegiSTORM : channel registration for multi-color stochastic optical reconstruction microscopy
  • 2023
  • Ingår i: BMC Bioinformatics. - : BMC. - 1471-2105. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Stochastic optical reconstruction microscopy (STORM), a super-resolution microscopy technique based on single-molecule localizations, has become popular to characterize sub-diffraction limit targets. However, due to lengthy image acquisition, STORM recordings are prone to sample drift. Existing cross-correlation or fiducial marker-based algorithms allow correcting the drift within each channel, but misalignment between channels remains due to interchannel drift accumulating during sequential channel acquisition. This is a major drawback in multi-color STORM, a technique of utmost importance for the characterization of various biological interactions.Results: We developed RegiSTORM, a software for reducing channel misalignment by accurately registering STORM channels utilizing fiducial markers in the sample. RegiSTORM identifies fiducials from the STORM localization data based on their non-blinking nature and uses them as landmarks for channel registration. We first demonstrated accurate registration on recordings of fiducials only, as evidenced by significantly reduced target registration error with all the tested channel combinations. Next, we validated the performance in a more practically relevant setup on cells multi-stained for tubulin. Finally, we showed that RegiSTORM successfully registers two-color STORM recordings of cargo-loaded lipid nanoparticles without fiducials, demonstrating the broader applicability of this software.Conclusions: The developed RegiSTORM software was demonstrated to be able to accurately register multiple STORM channels and is freely available as open-source (MIT license) at https://github.com/oystein676/RegiSTORM.git and https://doi.org/10.5281/ zenodo.5509861 (archived), and runs as a standalone executable (Windows) or via Python (Mac OS, Linux).
  •  
4.
  • Rashad, Ahmad, et al. (författare)
  • Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells
  • 2018
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 19:11, s. 4307-4319
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase release assays confirmed that CNF did not inhibit cellular viability. The CNF between the 3D printed PCL strands and pores acted as a hydrophilic barrier, enhancing cell seeding efficiency, and proliferation. CNF supported the formation of a well-organized actin cytoskeleton and cellular production of vinculin protein on the surfaces of TCP and PCL scaffolds. Moreover, CNF-coated surfaces enhanced not only alkaline phosphatase activity, but also collagen Type-I and mineral formation. It is concluded that CNF coating enhances cell attachment, proliferation, and osteogenic differentiation and has the potential to improve the performance of 3D printed PCL scaffolds for bone tissue engineering.
  •  
5.
  • Sych, Taras, et al. (författare)
  • High-throughput measurement of the content and properties of nano-sized bioparticles with single-particle profiler
  • 2024
  • Ingår i: Nature Biotechnology. - : Nature Publishing Group. - 1087-0156 .- 1546-1696. ; 42:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid nanoparticles, viruses, exosomes and liposomes are characterized by analysis of fluorescence fluctuations. We introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5-200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy