SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ojwang Dickson) "

Sökning: WFRF:(Ojwang Dickson)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brant, William, et al. (författare)
  • Selective Control of Composition in Prussian White for Enhanced Material Properties
  • 2019
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 31:18, s. 7203-7211
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium-ion batteries based on Prussian blue analogues (PBAs) are ideal for large-scale energy storage applications due to the ability to meet the huge volumes and low costs required. For Na2-xFe[Fe(CN)(6)](1-y)center dot zH(2)O, realizing its commercial potential means fine control of the concentration of sodium, Fe(CN)(6) vacancies, and water content. To date, there is a huge variation in the literature of composition leading to variable electrochemical performance. In this work, we break down the synthesis of PBAs into three steps for controlling the sodium, vacancy, and water content via an inexpensive, scalable synthesis method. We produce rhombohedral Prussian white Na1.88(5)Fe[Fe-(CN)(6)]center dot 0.18(9)H2O with an initial capacity of 158 mAh/g retaining 90% capacity after 50 cycles. Subsequent characterization revealed that the increased polarization on the 3 V plateau is coincident with a phase transition and reduced utilization of the high-spin Fe(III)/Fe(II) redox couple. This reveals a clear target for subsequent improvements of the material to boost long-term cycling stability. These results will be of great interest for the myriad of applications of PBAs, such as catalysis, magnetism, electrochromics, and gas sorption.
  •  
2.
  • Ericsson, Tore, et al. (författare)
  • Investigation of Valence Mixing in Sodium-Ion Battery Cathode Material Prussian White by Mossbauer Spectroscopy
  • 2022
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media S.A.. - 2296-598X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian white (PW), Na2Fe [Fe(CN)(6)], is a highly attractive cathode material for sustainable sodium-ion batteries due to its high theoretical capacity of similar to 170 mAhg(-1) and low-cost synthesis. However, there exists significant variability in the reported electrochemical performance. This variability originates from compositional flexibility possible for all Prussian blue analogs (PBAs) and is exasperated by the difficulty of accurately quantifying the specific composition of PW. This work presents a means of accurately quantifying the vacancy content, valence distribution, and, consequently, the overall composition of PW via Mossbauer spectroscopy. PW cathode material with three different sodium contents was investigated at 295 and 90 K. The observation of only two iron environments for the fully sodiated compound indicated the absence of [Fe(CN)(6)](4-) vacancies. Due to intervalence charge transfer between iron centers at 295 K, accurate determination of valences was not possible. However, by observing the trend of spectral intensities and center shift for the nitrogen-bound and carbon-bound iron, respectively, at 90 K, valence mixing between the iron sites could be quantified. By accounting for valence mixing, the sum of iron valences agreed with the sodium content determined from elemental analysis. Without an agreement between the total valence sum and the determined composition, there exists uncertainty around the accuracy of the elemental analysis and vacancy content determination. Thus, this study offers one more stepping stone toward a more rigorous characterization of composition in PW, which will enable further optimization of properties for battery applications. More broadly, the approach is valuable for characterizing iron-based PBAs in applications where precise composition, valence determination, and control are desired.
  •  
3.
  • Görlin, Mikaela, et al. (författare)
  • Aging and Charge Compensation Effects of the Rechargeable Aqueous Zinc/Copper Hexacyanoferrate Battery Elucidated Using In Situ X-ray Techniques
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:50, s. 59962-59974
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc/copper hexacyanoferrate (Zn/CuHCF) cell has gained attention as an aqueous rechargeable zinc-ion battery (ZIB) owing to its open framework, excellent rate capability, and high safety. However, both the Zn anode and the CuHCF cathode show unavoidable signs of aging during cycling, though the underlying mechanisms have remained somewhat ambiguous. Here, we present an in-depth study of the CuHCF cathode by employing various X-ray spectroscopic techniques. This allows us to distinguish between structure-related aging effects and charge compensation processes associated with electroactive metal centers upon Zn2+ ion insertion/deinsertion. By combining high-angle annular dark-field-scanning electron transmission microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy, and elemental analysis, we reconstruct the picture of both the bulk and the surface. First, we identify a set of previously debated X-ray diffraction peaks appearing at early stages of cycling (below 200 cycles) in CuHCF. Our data suggest that these peaks are unrelated to hypothetical ZnxCu1–xHCF phases or to oxidic phases, but are caused by partial intercalation of ZnSO4 into graphitic carbon. We further conclude that Cu is the unstable species during aging, whose dissolution is significant at the surface of the CuHCF particles. This triggers Zn2+ ions to enter newly formed Cu vacancies, in addition to native Fe vacancies already present in the bulk, which causes a reduction of nearby metal sites. This is distinct from the charge compensation process where both the Cu2+/Cu+ and Fe3+/Fe2+ redox couples participate throughout the bulk. By tracking the K-edge fluorescence using operando XAS coupled with cyclic voltammetry, we successfully link the aging effect to the activation of the Fe3+/Fe2+ redox couple as a consequence of Cu dissolution. This explains the progressive increase in the voltage of the charge/discharge plateaus upon repeated cycling. We also find that SO42– anions reversibly insert into CuHCF during charge. Our work clarifies several intriguing structural and redox-mediated aging mechanisms in the CuHCF cathode and pinpoints parameters that correlate with the performance, which will hold importance for the development of future Prussian blue analogue-type cathodes for aqueous rechargeable ZIBs
  •  
4.
  • Khasevani, Sepideh G., et al. (författare)
  • The beauty of being complex: Prussian blue analogues as selective catalysts and photocatalysts in the degradation of ciprofloxacin
  • 2022
  • Ingår i: Journal of Catalysis. - : Elsevier. - 0021-9517 .- 1090-2694. ; 410, s. 307-319
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the performance of four Prussian blue analogues (PBAs) as catalysts for the selective degradation of ciprofloxacin in water, under both dark and illumination conditions. We show that no light is actually needed to induce a selective degradation of the molecular target, while light irradiation spurs the process, without, however, resulting in the commonly reported photolysis-supported breaking down. We present a systematic characterization of the PBAs aiming at interpreting the catalytic outcomes in the light of a classic coordination chemistry analysis, empowered by the most recent findings in literature. We show that varying the transition metal binding the N atom of the cyanide bridge is key to promote photoinduced charge generation and transfer, which effectively disrupts the molecular target. The analysis of the materials before and after the irradiation with solar simulated light results in a change of the lattice parameters, indicating the possibility of a light-induced spin cross-over.
  •  
5.
  • Menon, Ashok S., et al. (författare)
  • A Crystallographic Reinvestigation of Li1.2Mn0.6Ni0.2O2
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite substantial research interest, the crystallography of the promising Li-ion positive electrode material, Li1.2Mn0.6Ni0.2O2, remains disputed. The dispute is predicated on the description of the cationic arrangement in the structure, and multiple structure models have been proposed. This study attempts to provide a fresh perspective to this debate through a multi-scalar structural characterisation of Li1.2Mn0.6Ni0.2O2. Combining Bragg diffraction, transmission electron microscopy and magnetic measurements with reverse Monte Carlo analysis of total scattering data, a quantitative structural description of Li1.2Mn0.6Ni0.2O2 is developed and the existing single- and multi-phase structural descriptions of this compound have been unified. Furthermore, the merits and drawbacks of each technique is evaluated with respect to the crystallography of Li1.2Mn0.6Ni0.2O2 to explain the factors that have contributed to the lack of clarity pervading the structural description of this material. It is envisioned that a better understanding of the crystallography of Li1.2Mn0.6Ni0.2O2 contributes to harnessing the electrochemical potential of this compound.  
  •  
6.
  • Menon, Ashok S., et al. (författare)
  • Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li2MnO3
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:5, s. 5939-5950
  • Tidskriftsartikel (refereegranskat)abstract
    • With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.
  •  
7.
  • Menon, Ashok S., et al. (författare)
  • Synthesis-structure relationships in Li- and Mn-rich layered oxides : phase evolution, superstructure ordering and stacking faults
  • 2022
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry. - 1477-9226 .- 1477-9234. ; 51:11, s. 4435-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides are promising positive electrode materials for future Li-ion batteries. The presence of crystallographic features such as cation-mixing and stacking faults in these compounds make them highly susceptible to synthesis-induced structural changes. Consequently, significant variations exist in the reported structure of these compounds that complicate the understanding of how the crystallographic structure influences its properties. This work investigates the synthesis-structure relations for three widely investigated Li- and Mn-rich layered oxides: Li2MnO3, Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2. For each compound, the average structure is compared between two synthetic routes of differing degrees of precursor mixing and four annealing protocols. Furthermore, thermodynamic and synthesis-specific kinetic factors governing the equilibrium crystallography of each composition are considered. It was found that the structures of these compounds are thermodynamically metastable under the synthesis conditions employed. In addition to a driving force to reduce stacking faults in the structure, these compositions also exhibited a tendency to undergo structural transformations to more stable phases under more intense annealing conditions. Increasing the compositional complexity introduced a kinetic barrier to structural ordering, making Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2 generally more faulted relative to Li2MnO3. Additionally, domains with different degrees of faulting were found to co-exist in the compounds. This study offers insight into the highly synthesis-dependent subtle structural complexities present in these compounds and complements the substantial efforts that have been undertaken to understand and optimise its electrochemical properties.
  •  
8.
  • Menon, Ashok S., et al. (författare)
  • Synthetic Pathway Determines the Nonequilibrium Crystallography of Li- and Mn-Rich Layered Oxide Cathode Materials
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:2, s. 1924-1935
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides show significant promise as electrode materials for future Li-ion batteries. However, an accurate description of its crystallography remains elusive, with both single-phase solid solution and multiphase structures being proposed for high performing materials such as Li1.2Mn0.54Ni0.13Co0.13O2. Herein, we report the synthesis of single- and multiphase variants of this material through sol-gel and solid-state methods, respectively, and demonstrate that its crystallography is a direct consequence of the synthetic route and not necessarily an inherent property of the composition, as previously argued. This was accomplished via complementary techniques that probe the bulk and local structure followed by in situ methods to map the synthetic progression. As the electrochemical performance and anionic redox behavior are often rationalized on the basis of the presumed crystal structure, clarifying the structural ambiguities is an important step toward harnessing its potential as an electrode material.
  •  
9.
  • Mink, Janos, et al. (författare)
  • Vibrational properties and bonding analysis of copper hexacyanoferrate complexes in solid state
  • 2019
  • Ingår i: Applied spectroscopy reviews (Softcover ed.). - : Informa UK Limited. - 0570-4928 .- 1520-569X. ; 54:5, s. 369-424
  • Forskningsöversikt (refereegranskat)abstract
    • Vibrational spectroscopic study of crystalline copper hexacyanoferrate complexes of composition K4Cu6II [Fe-II(CN)(6)](4)nH(2)O (1) and Cu-6(II)[Fe-III(CN)(6)](4)nH(2)O (2) with -Cu-N equivalent to C-Fe- bridging structures have been performed. The cubic Fmm (O-h(5)) unit-cells contain ideally 4 Fe and 4 Cu ions which were calculated by periodic density functional theory (DFT) (using the Gaussian09 C.01 software package) for ideal lattice compositions of K8Cu4II[Fe-II(CN)(6)](4) (1a), K4Cu4II[Fe-III(CN)(6)](4) (2a) and with lattice water molecules KCu4II[Fe-III(CN)(6)](3)6H(2)O (3a). Systematically, non-linear Cu-N equivalent to C structure was fitted with Cu-N equivalent to C bond angles about 155 degrees for complexes 1a, 2a, and 3a. Practically, all optically active internal modes of Fe(CN6)(n-) moieties resulted from factor group analysis as 4A(1g) + 6E(g) + 4F(1g) + 10F(1u) were experimentally observed and assigned. Some low-frequency translatory and librational modes were also interpreted. Vibrational bands were assigned to cis- and trans-Cu(NC)(4)(OH2) complexes which are formed in the lattice holes of both complexes. Vibrational spectra and force constants of a great number of transition metal hexacyano complexes of compositions K-4[M-II(CN)(6)], K-3[M-III(CN)(6)], CsLi2[M-III(CN)(6)] and Prussian blue analogues have been reexamined and recalculated. Internal and external modes of 6 different lattice water species (coordinated, hydrogen bonded, or zeolitic type) have been interpreted for complex 2 using results of periodic DFT calculation of model complex 3a.
  •  
10.
  • Myhill, Robert, et al. (författare)
  • On the P-T fO(2) stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions
  • 2016
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 171:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-pressure phases Fe4O5 and Fe506 have recently been added to the list of known iron oxides. As mixed -valence phases, it has been suggested that they could form in the Earth's mantle once the dominant minerals become saturated in ferric iron. The possibility that Fe4O5 could exist in the mantle is also supported by the fact that it forms extensive solid solutions with both Mg2+ and Cr3+. In this study, we present the results of high-pressure and high-temperature multi -anvil experiments performed between 5 and 24 GPa at 1000-1400 degrees C aimed at constraining the stability field of the Fe4O5 phase. We combine these results with published phase equilibria, equation of state and Fe Mg partitioning data to estimate the thermodynamic properties of Fe4O5, Fe5O6 and the (Mg,Fe)(2)Fe2O5 solid solution. Using our thermodynamic model, the oxygen fugacity at which the high-pressure iron oxides become stable is calculated and the redox stability of (Mg,Fe)(2)Fe2O5 in an assemblage of olivine and pyroxene is calculated as a function of the bulk Fe/(Fe + Mg) ratio. Fe4O5 and (Mg,Fe)(2)Fe2O5 are stable at oxygen fugacities higher than the diamond stability field and are, therefore, unlikely to be found as inclusions in diamonds. The stability field of Fe5O6, on the other hand, extends to oxygen fugacities compatible with diamond formation. Using the Mg Fe solid solution model, we show that Fe4O5-structured phases would be restricted to aluminium -poor environments in the mantle such as dunites or silica iron oxide rich sediments transported into the mantle via subduction.
  •  
11.
  • Nielsen, Ida, et al. (författare)
  • Water driven phase transitions in Prussian white cathode materials
  • 2022
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP). - 2515-7655. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian white (PW, Na2Fe [Fe(CN)(6)] center dot zH(2)O) is a promising cathode material for use in sodium-ion batteries for large-scale energy storage applications, which demand long cycling life-times. However, for non-aqueous battery applications PW must not contain any water, and yet dehydration induces a large volume change destabilizing the structure and reducing the cycling life. The material undergoes multiple phase transitions as a function of both the sodium and water content, however, the mechanism behind is poorly understood. Here, we use neutron diffraction to explore the influence of water on the structure of PW. For the first time, two structures for a single composition of PW were observed near room temperature independent of the synthesis method. These structures differ in the FeN6 and FeC6 octahedral tilting configurations, which is connected to the ordering of water in the framework. The removal of water modulates the magnitude of pre-existing structural distortions, if it is itself disordered within the structure, rather than modifying the nature of the distortions. These results provide a robust fundamental understanding of the chemical driving force impacting the nature and magnitude of structural distortions in Prussian blue analogues. The insights provide guidance for designing tilt-engineering ultimately enabling new materials with enhanced long-term electrochemical performance in battery applications.
  •  
12.
  • Ojwang, Dickson O., 1985-, et al. (författare)
  • Guest water hinders sodium-ion diffusion in low-defect Berlin green cathode material
  • 2022
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 51:38, s. 14712-14720
  • Tidskriftsartikel (refereegranskat)abstract
    • Among Prussian blue analogues (PBAs), NaxFe[Fe(CN)(6)](1-y)center dot nH(2)O is a highly attractive cathode material for sodium-ion batteries due to its high theoretical capacity of similar to 170 mA h g(-1) and inexpensive raw materials. However, concerns remain over its long-term electrochemical performance and structural factors which impact sources of resistance in the material and subsequently rate performance. Refined control of the [Fe(CN)(6)] vacancies and water content could help in realizing its market potential. In this context, we have studied a low-defect Berlin green (BG) Na0.30(5)Fe[Fe(CN)(6)](0.94(2))center dot nH(2)O with varied water content corresponding to 10, 8, 6, and 2 wt%. The impact of water on the electrochemical properties of BG was systematically investigated. The electrodes were cycled within a narrow voltage window of 3.15-3.8 V vs. Na/Na+ to avoid undesired phase transitions and side reactions while preserving the cubic structure. We demonstrate that thermal dehydration leads to a significantly improved cycling stability of over 300 cycles at 15 mA g(-1) with coulombic efficiency of >99.9%. In particular, the electrode with the lowest water content exhibited the fastest Na+-ion insertion/extraction as evidenced by the larger CV peak currents during successive scans compared to hydrated samples. The results provide fundamental insight for designing PBAs as electrode materials with enhanced electrochemical performance in energy storage applications.
  •  
13.
  • Ojwang, Dickson O., et al. (författare)
  • Influence of sodium content on the thermal behavior of low vacancy Prussian white cathode material
  • 2020
  • Ingår i: Dalton Transactions. - : ROYAL SOC CHEMISTRY. - 1477-9226 .- 1477-9234. ; 49:11, s. 3570-3579
  • Tidskriftsartikel (refereegranskat)abstract
    • Rechargeable sodium-ion batteries are the most attractive substitutes for lithium-ion batteries in large-scale energy storage devices due to wide spread reserves and low-cost of sodium resources and the similarities between sodium and lithium chemistry. However, finding a suitable cathode material is still a hurdle to be overcome. To date, Prussian white (PW), NaxFe[Fe(CN)(6)](y)center dot nH(2)O has stood out as one of the most promising Na-host materials due to its low cost, facile synthesis and competitive electrochemical capacity. Despite this, there are concerns that this material will thermally decompose at relatively low temperatures to form cyanogen gas, which is a safety hazard. Thus, low vacancy NaxFe[Fe(CN)(6)](y)center dot nH(2)O (x = 1.5, 1, 0.5 and 0) has been synthesized, and the influence of x on its thermal behavior systematically investigated. It is demonstrated that the thermal decomposition temperature, water content and moisture sensitivity of the samples strongly depend on the sodium content. The sample with x = 1.5 is found to be the most thermally stable and has the highest water content under the same experimental conditions. In addition, the sodium-rich samples (x = 1.5, 1 and 0.5) have higher surface water than the sodium-deficient one (x = 0). The local structure for this sample is also very different to the sodium-rich ones. Our findings offer new insights into the profound implications of proper material handling and safer operating conditions for practical Na-ion batteries and may be extended to analogous systems.
  •  
14.
  • Ojwang, Dickson O., et al. (författare)
  • Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:8, s. 10054-10063
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe2+ to Fe3+. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na4[Fe(CN)6] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.
  •  
15.
  • Ojwang, Dickson Odhiambo, 1985- (författare)
  • Prussian blue analogue copper hexacyanoferrate : Synthesis, structure characterization and its applications as battery electrode and CO2 adsorbent
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Prussian blue (PB) and Prussian blue analogues (PBAs) are compounds with potential applications in a large variety of fields such as gas storage, poison antidotes, electrochromism, electrochemistry and molecular magnets. The compounds are easy to synthesize, cheap, environmentally friendly and have been pursued for both fundamental research and industrial purposes. Despite the multifunctionality of PB and PBAs, they have complicated compositions, which are largely dependent on the synthesis methods and storage conditions. Thus, performing investigations on such compounds with defined composition, stoichiometry and crystal structure is essential.This thesis has focused on synthesis and detailed structure characterization of copper hexacyanoferrate (CuHCF) via X-ray powder diffraction (XRPD), neutron powder diffraction (NPD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), inductively coupled plasma-optical emission spectroscopy (ICP-OES), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS), infrared (IR) and Raman techniques. In addition, kinetics of thermal dehydration process, CO2 adsorption and CO2 adsorption kinetics were investigated. Moreover, in operando synchrotron X-ray diffraction experiments were performed to gain insight into the structure-electrochemistry relationships in an aqueous CuHCF/Zn battery during operation.
  •  
16.
  • Ojwang, Dickson O., et al. (författare)
  • Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate
  • 2016
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 55:12, s. 5924-5934
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper hexacyanoferrate, Cu-II[Fe-III(CN)(6)](2/3)center dot nH(2)O, was synthesized, and varied amounts of IC ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as Cu-II[Fe-III(CN)(6)](2/3)-nH(2)O + 2x/3K(+) + 2x/3e(-)K(+) <-> K-2x/3 Cu-II[Fe-x(II).Fe-1-x(II),(CN)(6)](2/3)-nH(2)O. Infrared, Raman, and Mossbauer spectroscopy studies show that Fe-II is continuously reduced to Fell with increasing x, accompanied by a decrease of the a-axis of the cubic Fn (3) over barm unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction similar to 10% of the Fe-III, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of similar to 26 wt % upon heating to 180 degrees C, above which the structure starts to decompose. The crystal structures of Cu-III[Fe-III(CN)(6)](2/3)center dot nH(2)O and K2/3Cu[Fe(CN)(6)](2/3)center dot nH(2)O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)(6) groups are vacant, and the octahedron around Cull is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the-Cu-N-C-Fe- framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.
  •  
17.
  • Ojwang, Dickson O., et al. (författare)
  • The adsorption kinetics of CO2 on copper hexacyanoferrate studied by thermogravimetric analysis
  • 2018
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 272, s. 70-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 adsorption and CO2 adsorption kinetics were evaluated by thermogravimetry on two Prussian blue analogues, K2x/3CuII [Fe-x(II) Fe-1-x(III) (CN)(6)](2/3), with nominally K-free x = 0.0 and K-rich x = 1.0. Differential isosteric heats of adsorption were determined from adsorption isotherms using the Clausius-Clapeyron equation and integral values by differential scanning calorimetry. The average differential heats of CO2 adsorption are 28 kJ/mol for x = 0.0 and 33 kJ/mol for x = 1.0. Both compositions show small maxima in differential heat at similar to 1 mmol/g. The integral adsorption heats were determined to be 26 kJ/mol for both x = 0.0 and x = 1.0. The kinetic CO(2 )adsorption/desorption curves can be modeled by a double exponential function describing two parallel processes with different rate constants. The activation energies for CO2 adsorption on x = 0.0 were 6 (1) kJ/mol for the faster component and 16 (1) kJ/mol for the slower one, while the corresponding values for x = 1.0 were 9 (1) kJ/mol and 7 (1) kJ/mol, respectively. The maximum CO2 uptake for both compositions was found to be similar to 4.5 mmol/g, 19.8 wt%, at 1 bar and 273 K. The materials exhibited fast adsorption kinetics and stable cyclic performance at room temperature. The kinetics were slower for the samples with x = 1.0 than for x = 0.0 which may be attributed to interactions between CO2 molecules and K+ ions.
  •  
18.
  • Ojwang, Dickson, et al. (författare)
  • The adsorption kinetics of CO2 on copper hexacyanoferrate studied by thermogravimetric analysis
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The CO2 adsorption and CO2 adsorption kinetics were evaluated by thermogravimetry on two Prussian blue analogues, K2x/3CuII[FeIIx FeIII1-x(CN)6]2/3, with nominally K-free x = 0.0 and K-rich x = 1.0. Differential isosteric heats of adsorption were determined from adsorption isotherms using the Clausius-Clapeyron equation and integral values by differential scanning calorimetry. The average differential heats of CO2 adsorption are 28 kJ/mol for x = 0.0 and 33 kJ/mol for x = 1.0.  Both compositions show small maxima in differential heat at ~1 mmol/g.  The integral adsorption heats were determined to be 26 kJ/mol for both x = 0.0 and x = 1.0. The kinetic CO2 adsorption/desorption curves can be modeled by a double exponential function describing two parallel processes with different rate constants. The activation energies for CO2 adsorption on x = 0.0 were 6(1) kJ/mol for the faster component and 16(1) kJ/mol for the slower one, while the corresponding values for x = 1.0 were 9(1) kJ/mol and 7(1) kJ/mol, respectively. The maximum CO2 uptake for both compositions was found to be ~4.5 mmol/g, 19.8 wt %, at 1 bar and 273 K. The materials exhibited fast adsorption kinetics and stable cyclic performance at room temperature. The kinetics were slower for the samples with x = 1.0 than for x = 0.0 which may be attributed to interactions between CO2 molecules and K+ ions.   
  •  
19.
  • Otieno, Austine O., et al. (författare)
  • Pineapple peel biochar and lateritic soil as adsorbents for recovery of ammonium nitrogen from human urine
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 293
  • Tidskriftsartikel (refereegranskat)abstract
    • Human urine is a rich source of nitrogen which can be captured to supplement the existing sources of nitrogen fertilizers thus contributing to enhanced crop production. However, urine is the major contributor of macronutrients in municipal wastewater flows resulting into eutrophication of the receiving water bodies. Herein, pineapple peel biochar (PPB), and lateritic soil (LS) adsorbents were prepared for the safe removal of ammonium nitrogen (NH4+-N) from human urine solutions. Physicochemical properties of PPB, and LS were characterized by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to investigate the relationship of their properties with NH4+-N adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were employed to correlate the experimental equilibrium adsorption data. The effect of contact time and initial concentration of NH4+-N adsorption was also evaluated. The D-R isotherm model best described the behaviour of NH4+-N adsorption on both PPB and LS based on the coefficient of correlation values. This model showed that the adsorption of NH4+-N on both samples was a physical process with PPB and LS having mean surface adsorption energies of 1.826 × 10−2, and 1.622 × 10−2 kJ/mol, respectively. The PPB exhibited a slightly higher adsorption capacity for NH4+-N (13.40 mg/g) than LS (10.73 mg/g) with the difference attributed to its higher surface area and porosity. These values are good indicators for assessing the effectiveness of the materials for adsorption of NH4+-N from human urine.
  •  
20.
  •  
21.
  • Renman, Viktor, et al. (författare)
  • Manganese Hexacyanomanganate as a Positive Electrode for Nonaqueous Li-, Na-, and K-Ion Batteries
  • 2019
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 123:36, s. 22040-22049
  • Tidskriftsartikel (refereegranskat)abstract
    • K2Mn[Mn(CN)(6)] is synthesized, characterized, and evaluated as possible positive electrode material in nonaqueous Li-, Na-, and K-ion batteries. This compound belongs to the rich and versatile family of hexacyanometallates displaying distinctive structural properties, which makes it interesting for ion insertion purposes. It can be viewed as a perovskite-like compound in which CN-bridged Mn(CN)(6) octahedra form an open framework structure with sufficiently large diffusion channels able to accommodate a variety of insertion cations. By means of galvanostatic cycling and cyclic voltammetry tests in nonaqueous alkali metal half-cells, it is demonstrated that this material is able to reversibly host Li+, Na+, and K+ ions via electrochemical insertion/deinsertion within a wide voltage range. The general electrochemical features are similar for all of these three ion insertion chemistries. An in operando X-ray diffraction investigation indicates that the original monoclinic structure is transformed into a cubic one during charging (i.e., removal of cations from the host framework) and that such a process is reversible upon subsequent cell discharge and cation reuptake.
  •  
22.
  • Renman, Viktor, et al. (författare)
  • Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The storage process of Zn2+ in the Prussian blue analogue (PBA) copper hexacyanoferrate (Cu[Fe(CN)6]2/3·nH2O - CuHCF) framework structure in a context of rechargeable aqueous batteries is examined by means of in-operando synchrotron X-ray diffraction. Via sequential unit-cell parameter refinements of time-resolved diffraction data, it is revealed that the step-profile of the cell output voltage curves during repeated electrochemical insertion and removal of Zn2+ in the CuHCF host structure is associated with a non-linear contraction and expansion of the unit-cell in the range 0.36x/3Cu[Fe(CN)6]2/3·nH2O. For a high insertion cation content there is no apparent change in the unit-cell contraction.  Furthermore, a structural analysis with respect to the occupancies of possible Zn2+ sites suggest that the Fe(CN)6 vacancies within the CuHCF framework play an important role in the structural-electrochemical behaviour of this particular system. More specifically, it is observed that Zn2+ swaps position during electrochemical cycling, hopping between cavity sites to vacant ferricyanide sites.
  •  
23.
  • Renman, Viktor, et al. (författare)
  • Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction
  • 2017
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 369, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • The storage process of Zn2+ in the Prussian blue analogue (PBA) copper hexacyanoferrate (Cu[Fe(CN)(6)](2/3)-nH(2) O-CuHCF) framework structure in a context of rechargeable aqueous batteries is examined by means of in operando synchrotron X-ray diffraction. Via sequential unit-cell parameter refinements of time-resolved diffraction data, it is revealed that the step-profile of the cell output voltage curves during repeated electrochemical insertion and removal of Zn2+ in the CuHCF host structure is associated with a non-linear contraction and expansion of the unit-cell in the range 0.36 < x < 1.32 for Znx/3Cu[Fe(CN)(6)](2/3)-nH(2)O. For a high insertion cation content there is no apparent change in the unit-cell contraction. Furthermore, a structural analysis with respect to the occupancies of possible Zn2+ sites suggests that the Fe(CN)(6) vacancies within the CuHCF framework play an important role in the structural-electrochemical behavior of this particular system. More specifically, it is observed that Zn2+ swaps position during electrochemical cycling, hopping between cavity sites to vacant ferricyanide sites.
  •  
24.
  • Valvo, Mario, et al. (författare)
  • 3 - Impact of nanomaterials on Li-ion battery anodes
  • 2021
  • Ingår i: Nanomaterials for Electrochemical Energy Storage. - : Elsevier. ; , s. 55-98
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Anodic materials play a key role in the development of Li-ion batteries, as they influence their overall performances. Demand for improved energy and power densities, enhanced safety, and reduction in environmental impact have driven the attention toward progressive use of alternative materials with respect to state-of-the-art graphite. Developing advanced anodes requires a clear understanding and full exploitation of their underlying electrochemical mechanisms (e.g., Li insertion, Li-alloying, and conversion reactions). Nanostructured anode materials can help in achieving this goal and addressing issues to enable alternative candidates beyond graphite. The impact of nanomaterials on the development of Li-ion battery anodes is here discussed through a two-fold perspective focused on the performances enhancement and critical assessment of practical electrochemical energy storage applications of industrial relevance. A summary of the requirements to realize advanced anodes is provided at the beginning of the chapter, while geometrical aspects and dimensionality of nanostructures, together with their influence on the electrochemical properties of anodic materials and corresponding electrodes, are examined in the subsequent sections. The advantages and disadvantages of nanostructured anode materials are also discussed in detail, followed by examples of rational electrode design and composites for the fabrication of advanced nanostructured anodes. Finally, various anode materials are considered for these purposes and examples of 3D micro-battery anodes are also included.
  •  
25.
  • Wardecki, Dariusz, et al. (författare)
  • Neutron Diffraction and EXAFS Studies of K2x/3Cu[Fe(CN)(6)](2/3)center dot nH(2)O
  • 2017
  • Ingår i: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 17:3, s. 1285-1292
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of copper hexacyanoferrate (CuHCF), K2x/3Cu[Fe-(CN)(6)](2/3)center dot nH(2)O, with nominal compositions x = 0.0 and x = 1.0 was studied by neutron powder diffraction (NPD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The compound crystallizes in space group Fm (3) over barm, with a = 10.1036(11) angstrom and a = 10.0588(5) angstrom for x = 0.0 and x = 1.0, respectively. Difference Fourier maps for x = 0.0 show that the coordinated water molecules are positioned at a site 1921 close to vacant N positions in the -Fe-C-N-Cu- framework, while additional zeolitic water molecules are distributed over three sites (8c, 32f, and 48g) in the -Fe-C-N-Cu- framework cavities. The refined water content for x = 0.0 is 16.8(8) per unit cell, in agreement with the ideal 16 (n = 4). For x = 1.0, the refinement suggests that 2.6 K atoms per unit cell (x = 0.98) are distributed only over the sites 8c and 32f in the cavities, and 13.9(7) water per unit cell are distributed over all the four positions. The EXAFS data for Fe, Cu, and K K-edges are in agreement with the NPD data, supporting a structure model with a linear -Fe-C-N-Cu- framework and K+ ions in the cavities.
  •  
26.
  • Åkerblom, Ida E., et al. (författare)
  • A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis
  • 2017
  • Ingår i: Journal of thermal analysis and calorimetry (Print). - : Springer Science and Business Media LLC. - 1388-6150 .- 1588-2926. ; 129:2, s. 721-731
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetics of thermal dehydration of K2x/3Cu[Fe(CN)6]2/3·nH2O was studied using thermogravimetry for x = 0.0 and 1.0. Data from both non-isothermal and isothermal measurements was used for model-free kinetic analysis by the Friedman and KAS methods. The water content was determined to be n = 2.9 – 3.9, with an additional ~10% of water, likely surface adsorbed, that leaves very fast when samples are exposed to a dry atmosphere. The determined activation energies are 19 kJ (mol H2O)-1 for x = 0.0 and 16 kJ (mol H2O)-1 for x = 1.0. The dehydration is adequately described as a diffusion controlled single step reaction following the D3 Jander model. The determined dehydration enthalpy is, 11 kJ (mol H2O)-1 for x = 0.0 and 27 kJ (mol H2O)-1 for x = 1.0, relative to that of water. The increase with increasing x is evidence for that the H2O molecules form bonds to the incorporated K+ ions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26
Typ av publikation
tidskriftsartikel (19)
annan publikation (4)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Ojwang, Dickson O. (20)
Brant, William (9)
Svensson, Gunnar (9)
Ericsson, Tore (7)
Valvo, Mario (7)
Häggström, Lennart (6)
visa fler...
Grins, Jekabs (6)
Renman, Viktor (6)
Edström, Kristina, P ... (5)
Menon, Ashok S. (5)
Gómez, Cesar Pay, Do ... (5)
Mogensen, Ronnie (3)
Salazar-Alvarez, Ger ... (2)
Gustafsson, Torbjörn (2)
Svedlindh, Peter (2)
Gustafsson, Torbjörn ... (2)
Wardecki, Dariusz (2)
Ulusoy, Seda (2)
Pay Gómez, Cesar (2)
Mink, Janos (1)
Johnsson, Mats (1)
Görlin, Mikaela (1)
Riekehr, Lars (1)
Mikkola, Jyri-Pekka (1)
Jaworski, Aleksander (1)
Tai, Cheuk-Wai (1)
Henry, Paul F. (1)
Younesi, Reza (1)
Svensson, Mikael (1)
Edström, Kristina (1)
Pell, Andrew J. (1)
Rigoni, Federica (1)
Lee, Ming-Tao (1)
Asfaw, Habtom Desta, ... (1)
Maibach, Julia (1)
Willhammar, Tom (1)
Concina, Isabella (1)
Hermann, Raphael P. (1)
Brant, William R. (1)
Schmid, Siegbert (1)
Colbin, Simon (1)
Häggstrom, Lennart (1)
Nikjoo, Dariush, 197 ... (1)
Ek, Gustav (1)
Svensson, Gunnar, Pr ... (1)
Hajba, Laszló (1)
Pay Gómez, Cesar, Do ... (1)
Sarmad, Shokat (1)
Nemeth, Csaba (1)
Mihaly, Judith (1)
visa färre...
Lärosäte
Uppsala universitet (18)
Stockholms universitet (14)
Umeå universitet (1)
Luleå tekniska universitet (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (26)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy