SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oling Gerben) "

Sökning: WFRF:(Oling Gerben)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baiguera, Stefano, et al. (författare)
  • Conformal Carroll scalars with boosts
  • 2023
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We construct two distinct actions for scalar fields that are invariant under local Carroll boosts and Weyl transformations. Conformal Carroll field theories were recently argued to be related to the celestial holography description of asymptotically flat spacetimes. However, only few explicit examples of such theories are known, and they lack local Carroll boost symmetry on a generic curved background. We derive two types of conformal Carroll scalar actions with boost symmetry on a curved background in any dimension and compute their energy-momentum tensors, which are traceless. In the first type of theories, time derivatives dominate and spatial derivatives are suppressed. In the second type, spatial derivatives dominate, and constraints are present to ensure local boost invariance. By integrating out these constraints, we show that the spatial conformal Carroll theories can be reduced to lower-dimensional Euclidean CFTs, which is reminiscent of the embedding space construction.
  •  
2.
  • Bidussi, Leo, et al. (författare)
  • Longitudinal Galilean and Carrollian limits of non-relativistic strings
  • 2023
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; 2023:12
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that one can take an infinite speed of light limit that gives rise to non-relativistic strings with a relativistic worldsheet sigma model but with a non-relativistic target space geometry. In this work we systematically explore two further limits in which the worldsheet becomes non-Lorentzian. The first gives rise to a Galilean string with a Galilean structure on the worldsheet, extending previous work on Spin Matrix-related string theory limits. The second is a completely novel limit leading to a worldsheet theory with a Carrollian structure. We find the Nambu-Goto and Polyakov formulations of both limits and explore gauge fixing choices. Furthermore, we study in detail the case of the Galilean string for a class of target space geometries that are related to Spin Matrix target space geometries, for which the Nambu-Goto action (in static gauge) is quadratic in the fields.
  •  
3.
  • Bidussi, Leo, et al. (författare)
  • Torsional string Newton-Cartan geometry for non-relativistic strings
  • 2022
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • We revisit the formulation of non-relativistic (NR) string theory and its target space geometry. We obtain a new formulation in which the geometry contains a two-form field that couples to the tension current and that transforms under string Galilei boosts. This parallels the Newton-Cartan one-form that couples to the mass current of a non-relativistic point particle. We show how this formulation of the NR string arises both from an infinite speed of light limit and a null reduction of the relativistic closed bosonic string. In both cases, the two-form originates from a combination of metric quantities and the Kalb-Ramond field. The target space geometry of the NR string is seen to arise from the gauging of a new algebra that is obtained by an Inonu-Wigner contraction of the Poincare algebra extended by the symmetries of the Kalb-Ramond field. In this new formulation, there are no superfluous target space fields that can be removed by fixing a Stuckelberg symmetry. Classically, there are no foliation/torsion constraints imposed on the target space geometry.
  •  
4.
  • Hansen, Dennis, et al. (författare)
  • Carroll expansion of general relativity
  • 2022
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the small speed of light expansion of general relativity, utilizing the modern perspective on non-Lorentzian geometry. This is an expansion around the ultra-local Car-roll limit, in which light cones close up. To this end, we first rewrite the Einstein???Hilbert action in pre-ultra-local variables, which is closely related to the 3+1 decomposition of general relativity. At leading order in the expansion, these pre-ultra-local variables yield Carroll geometry and the resulting action describes the electric Carroll limit of general relativity. We also obtain the next-to-leading order action in terms of Carroll geometry and next-to-leading order geometric fields. The leading order theory yields constraint and evolution equations, and we can solve the evolution analytically. We furthermore construct a Carroll version of Bowen???York initial data, which has associated conserved boundary linear and angular momentum charges. The notion of mass is not present at leading order and only enters at next-to-leading order. This is illustrated by considering a particular truncation of the next-to-leading order action, corresponding to the magnetic Carroll limit, where we find a solution that describes the Carroll limit of a Schwarzschild black hole. Finally, we comment on how a cosmological constant can be incorporated in our analysis.
  •  
5.
  • Hansen, Dennis, et al. (författare)
  • Galilean first-order formulation for the nonrelativistic expansion of general relativity
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 104:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We reformulate the Palatini action for general relativity in terms of moving frames that exhibit local Galilean covariance in a large speed of light expansion. For this, we express the action in terms of variables that are adapted to a Galilean subgroup of the GL(n, R) structure group of a general frame bundle. This leads to a novel Palatini-type formulation of general relativity that provides a natural starting point for a first-order nonrelativistic expansion. in doing so, we show how a comparison of Lorentzian and Newton-Cartan metric compatibility explains the appearance of torsion in the nonrelativistic expansion.
  •  
6.
  • Harmark, Troels, et al. (författare)
  • Relating non-relativistic string theories
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer. - 1126-6708 .- 1029-8479. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-relativistic string theories promise to provide simpler theories of quantum gravity as well as tractable limits of the AdS/CFT correspondence. However, several apparently distinct non-relativistic string theories have been constructed. In particular, one approach is to reduce a relativistic string along a null isometry in target space. Another method is to perform an appropriate large speed of light expansion of a relativistic string. Both of the resulting non-relativistic string theories only have a well-defined spectrum if they have nonzero winding along a longitudinal spatial direction. In the presence of a Kalb-Ramond field, we show that these theories are equivalent provided the latter direction is an isometry. Finally, we consider a further limit of non-relativistic string theory that has proven useful in the context of AdS/CFT (related to Spin Matrix Theory). In that case, the worldsheet theory itself becomes non-relativistic and the dilaton coupling vanishes.
  •  
7.
  • Harmark, Troels, et al. (författare)
  • Spin Matrix theory string backgrounds and Penrose limits of AdS/CFT
  • 2021
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :3
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin Matrix theory (SMT) limits provide a way to capture the dynamics of the AdS/CFT correspondence near BPS bounds. On the string theory side, these limits result in non-relativistic sigma models that can be interpreted as novel non-relativistic strings. This SMT string theory couples to non-relativistic U(1)-Galilean background geometries. In this paper, we explore the relation between pp-wave backgrounds obtained from Penrose limits of AdS(5) x S-5, and a new type of U(1)-Galilean backgrounds that we call flat-fluxed (FF) backgrounds. These FF backgrounds are the simplest possible SMT string backgrounds and correspond to free magnons from the spin chain perspective. We provide a catalogue of the U(1)-Galilean backgrounds one obtains from SMT limits of string theory on AdS(5) x S-5 and subsequently study large charge limits of these geometries from which the FF backgrounds emerge. We show that these limits are analogous to Penrose limits of AdS(5) x S-5 and demonstrate that the large charge/Penrose limits commute with the SMT limits. Finally, we point out that U(1)-Galilean backgrounds prescribe a symplectic manifold for the transverse SMT string embedding fields. This is illustrated with a Hamiltonian derivation for the SMT limit of a particle.
  •  
8.
  • Hartong, Jelle, et al. (författare)
  • Review on non-relativistic gravity
  • 2023
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • This study reviews the history of Newton–Cartan (NC) gravity with an emphasis on recent developments, including the covariant, off-shell large speed of light expansion of general relativity. Depending on the matter content, this expansion leads to either NC geometry with absolute time or NC geometry with non-relativistic gravitational time dilation effects. The latter shows that non-relativistic gravity (NRG) includes a strong field regime and goes beyond Newtonian gravity. We start by reviewing early developments in NC geometry, including the covariant description of Newtonian gravity, mainly through the works of Trautman, Dautcourt, Künzle, and Ehlers. We then turn to more modern developments, such as the gauging of the Bargmann algebra and describe why the latter cannot be used to find an off-shell covariant description of Newtonian gravity. We review recent work on the 1/c expansion of general relativity and show that this leads to an alternative “type II” notion of NC geometry. Finally, we discuss matter couplings, solutions, and odd powers in 1/c and conclude with a brief summary of related topics.
  •  
9.
  • Musaeus, Jørgen, et al. (författare)
  • Setting the connection free in the Galilei and Carroll expansions of gravity
  • 2024
  • Ingår i: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 109:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We obtain a Palatini-type formulation for the Galilei and Carroll expansions of general relativity, where the connection is promoted to a variable. Known versions of these large and small speed of light expansions are derived from the Einstein-Hilbert action and involve dynamical Newton-Cartan or Carroll geometry, along with additional gauge fields at subleading orders. The corresponding Palatini actions that we obtain in this paper are derived from an appropriate expansion of the Einstein-Palatini action, and the connection variable reduces to the Galilei- or Carroll-adapted connection on shell. In particular, we present the Palatini form for the next-to-leading-order Galilean action and recover the known equations of motion. We also compute the leading-order Palatini-type action for the Carrollian case and show that, while it depends on the connection variable, it reduces on shell to the known action of electric Carroll gravity, which only depends on extrinsic curvature.
  •  
10.
  • Oling, Gerben, et al. (författare)
  • Aspects of Nonrelativistic Strings
  • 2022
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • We review recent developments on nonrelativistic string theory. In flat spacetime, the theory is defined by a two-dimensional relativistic quantum field theory with nonrelativistic global symmetries acting on the worldsheet fields. This theory arises as a self-contained corner of relativistic string theory. It has a string spectrum with a Galilean dispersion relation, and a spacetime S-matrix with nonrelativistic symmetry. This string theory also gives a unitary and ultraviolet complete framework that connects different corners of string theory, including matrix string theory and noncommutative open strings. In recent years, there has been a resurgence of interest in the non-Lorentzian geometries and quantum field theories that arise from nonrelativistic string theory in background fields. In this review, we start with an introduction to the foundations of nonrelativistic string theory in flat spacetime. We then give an overview of recent progress, including the appropriate target-space geometry that nonrelativistic strings couple to. This is known as (torsional) string Newton-Cartan geometry, which is neither Lorentzian nor Riemannian. We also give a review of nonrelativistic open strings and effective field theories living on D-branes. Finally, we discuss applications of nonrelativistic strings to decoupling limits in the context of the AdS/CFT correspondence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy