SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olsen Thale Kristin) "

Sökning: WFRF:(Olsen Thale Kristin)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almstedt, Elin, 1988-, et al. (författare)
  • Integrative discovery of treatments for high-risk neuroblastoma
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.
  •  
2.
  • Borgenvik, Anna, 1987-, et al. (författare)
  • Dormant SOX9-Positive Cells Facilitate MYC-Driven Recurrence of Medulloblastoma
  • 2022
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 82:24, s. 4586-4603
  • Tidskriftsartikel (refereegranskat)abstract
    • Relapse is the leading cause of death in patients with medulloblas-toma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse.Significance: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse.
  •  
3.
  • Castell, Alina, et al. (författare)
  • MYCMI-7 : A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner
  • 2022
  • Ingår i: Cancer Research Communications. - : American Association For Cancer Research (AACR). - 2767-9764. ; 2:3, s. 182-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells be- come G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregu- lates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer.Significance: Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby ham- pering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.
  •  
4.
  • Olsen, Thale Kristin, et al. (författare)
  • DHODH is an independent prognostic marker and potent therapeutic target in neuroblastoma
  • 2022
  • Ingår i: JCI Insight. - : AMER SOC CLINICAL INVESTIGATION INC. - 2379-3708. ; 7:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite intensive therapy, children with high-risk neuroblastoma are at risk of treatment failure. We applied a multiomic system approach to evaluate metabolic vulnerabilities in human neuroblastoma. We combined metabolomics, CRISPR screening, and transcriptomic data across more than 700 solid tumor cell lines and identified dihydroorotate dehydrogenase (DHODH), a critical enzyme in pyrimidine synthesis, as a potential treatment target. Of note, DHODH inhibition is currently under clinical investigation in patients with hematologic malignancies. In neuroblastoma, DHODH expression was identified as an independent risk factor for aggressive disease, and high DHODH levels correlated to worse overall and event-free survival. A subset of tumors with the highest DHODH expression was associated with a dismal prognosis, with a 5-year survival of less than 10%. In xenograft and transgenic neuroblastoma mouse models treated with the DHODH inhibitor brequinar, tumor growth was dramatically reduced, and survival was extended. Furthermore, brequinar treatment was shown to reduce the expression of MYC targets in 3 neuroblastoma models in vivo. A combination of brequinar and temozolomide was curative in the majority of transgenic TH-MYCN neuroblastoma mice, indicating a highly active clinical combination therapy. Overall, DHODH inhibition combined with temozolomide has therapeutic potential in neuroblastoma, and we propose this combination for clinical testing.
  •  
5.
  • Torsvik, Anja, et al. (författare)
  • U-251 revisited : genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells
  • 2014
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 3:4, s. 812-824
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line.
  •  
6.
  • Verhoeven, Bronte Manouk, et al. (författare)
  • The immune cell atlas of human neuroblastoma
  • 2022
  • Ingår i: Cell Reports Medicine. - : Elsevier BV. - 2666-3791. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy