SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Onishi Kyoko 1989) "

Sökning: WFRF:(Onishi Kyoko 1989)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falstad, Niklas, 1987, et al. (författare)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
2.
  • Gorski, Mark, 1989, et al. (författare)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
3.
  • Gorski, Mark, 1989, et al. (författare)
  • Discovery of methanimine (CH 2 NH) megamasers toward compact obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first search for the 5.29 GHz methanimine (CH2NH) 110 - 111 transition toward a sample of galaxy nuclei. We target seven galaxies that host compact obscured nuclei (CONs) with the Karl G. Jansky Very Large Array. These galaxies are characterized by Compton-thick cores. CH2NH emission is detected toward six CONs. The brightness temperatures measured toward Arp 220 indicate maser emission. Isotropic luminosities of the CH2NH transition, from all sources where it is detected, exceed 1 Lpdbl and thus may be considered megamasers. We also detect formaldehyde (H2CO) emission toward three CONs. The isotropic CH2NH luminosities are weakly correlated with the infrared luminosity of the host galaxy and strongly correlated with OH megamaser luminosities from the same galaxies. Non-local thermodynamic equilibrium radiative transfer models suggest that the maser is pumped by the intense millimeter-to-submillimeter Our study suggests that CH2NH megamasers are linked to the nuclear processes within 100 pc of the Compton-thick nucleus within CONs.
  •  
4.
  • Gorski, Mark, 1989, et al. (författare)
  • The opaque heart of the galaxy IC 860: Analogous protostellar, kinematics, morphology, and chemistry
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Compact Obscured Nuclei (CONs) account for a significant fraction of the population of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These galaxy nuclei are compact, with radii of 10-100 pc, with large optical depths at submm and far-infrared wavelengths, and characterized by vibrationally excited HCN emission. It is not known what powers the large luminosities of the CON host galaxies because of the extreme optical depths towards their nuclei. CONs represent an extreme phase of nuclear growth, hiding either a rapidly accreting supermassive black hole or an abnormal mode of star formation. Regardless of their power source, the CONs allow us to investigate the processes of nuclear growth in galaxies. Here we apply principal component analysis (PCA) tomography to high-resolution (000:06) ALMA observations at frequencies 245 to 265 GHz of the nearby CON (59 Mpc) IC 860. PCA is a technique to unveil correlation in the data parameter space, and we apply it to explore the morphological and chemical properties of species in our dataset. The leading principal components reveal morphological features in molecular emission that suggest a rotating, infalling disk or envelope, and an outflow analogous to those seen in Galactic protostars. One particular molecule of astrochemical interest is methanimine (CH2NH), a precursor to glycine, three transitions of which have been detected towards IC 860.We estimate the average CH2NH column density towards the nucleus of IC 860 to be _1017cm2, with an abundance exceeding 108 relative to molecular hydrogen, using the rotation diagram method and non-LTE radiative transfer models. This CH2NH abundance is consistent with those found in hot cores of molecular clouds in the Milky Way. Our analysis suggests that CONs are an important stage of chemical evolution in galaxies, that are chemically and morphologically similar to Milky Way hot cores.
  •  
5.
  • Nishimura, Y., et al. (författare)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
6.
  • Wethers, Clare, 1991, et al. (författare)
  • Double, double, toil, and trouble: The tails, bubbles, and knots of the local compact obscured nucleus galaxy NGC 4418
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Compact obscured nuclei (CONs) are an extremely obscured (NH2>1025 cm-2) class of galaxy nuclei thought to exist in 20-40 per cent of nearby (ultra-)luminous infrared galaxies While they have been proposed to represent a key phase of the active galactic nucleus (AGN) feedback cycle, the nature of these CONs -what powers them, their dynamics, and their impact on the host galaxy -remains unknown. Aims. This work analyses the galaxy-scale optical properties of the local CON NGC 4418 (z=0.00727). The key aims of the study are to understand the impact of nuclear outflows on the host galaxy and infer the power source of its CON. Through the mapping of the galaxy spectra and kinematics, we seek to identify new structures in NGC 4418 to ultimately reveal more about the CON's history, its impact on the host, and, more generally, the role CONs play in galaxy evolution. Methods. We present new, targeted integral field unit observations of the galaxy with the Multi-Unit Spectroscopic Explorer (MUSE). For the first time, we mapped the ionised and neutral gas components of the galaxy, along with their dynamical structure, to reveal several previously unknown features of the galaxy. Results. We confirm the presence of a previously postulated, blueshifted outflow along the minor axis of NGC 4418. We find this outflow to be decelerating and, for the first time, show it to extend in both directions from the nucleus. We report the discovery of two further outflow structures: a redshifted southern outflow connected to a tail of ionised gas surrounding the galaxy and a blueshifted bubble to the north. In addition to these features, we find the [OIII] emission reveals the presence of knots across the galaxy, which are consistent with regions of the galaxy that have been photoionised by an AGN. Conclusions. We identify several new features in NGC 4418, including a bubble structure, a reddened outflow, and [OIII] knot structures throughout the galaxy. We additionally confirm the presence of a bilateral blueshifted outflow along the minor axis. Based on the properties of these features, we conclude that the CON in NGC 4418 is most likely powered by AGN activity.
  •  
7.
  • Davis, Timothy A., et al. (författare)
  • Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC404 with sub-parsec resolution ALMA observations
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:4, s. 4061-4078
  • Tidskriftsartikel (refereegranskat)abstract
    • We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of approximate to 0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh-Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a approximate to 5 x 10(5) M-circle dot black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5(-3.8)(+4.1) x 10(5) M-circle dot (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass-velocity dispersion and black hole massbulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.
  •  
8.
  • Imanishi, Masatoshi, et al. (författare)
  • ALMA 002 Resolution Observations Reveal HCN-abundance-enhanced Counter-rotating and Outflowing Dense Molecular Gas at the NGC 1068 Nucleus
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 902:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ALMA similar to 002 resolution observations of the nucleus of the nearby (similar to 14 Mpc) type 2 active galactic nucleus NGC 1068 at HCN/HCO+/HNCJ = 3-2 lines, as well as at their(13)C isotopologue and vibrationally excited lines, to scrutinize the morphological, dynamical, chemical, and physical properties of dense molecular gas in the putative dusty molecular torus around a mass-accreting supermassive black hole. We confirm almost east-west-oriented dense molecular gas emission both morphologically and dynamically, which we regard as coming from the torus. Bright emission is compact (less than or similar to 3 pc), and low-surface-brightness emission extends out to 5-7 pc. These dense molecular gas properties are not symmetric between the eastern and western torus. The HCNJ = 3-2 emission is stronger than the HCO(+)J = 3-2 emission within the similar to 7 pc torus region, with an estimated dense molecular mass of (0.4-1.0) x 10(6)M. We interpret that HCN abundance is enhanced in the torus. We detect signatures of outflowing dense molecular gas and a vibrationally excited HCNJ = 3-2 line. Finally, we find that in the innermost (less than or similar to 1 pc) part of the torus, the dense molecular line rotation velocity, relative to the systemic velocity, is the opposite of that in the outer (greater than or similar to 2 pc) part, in both the eastern and western torus. We prefer a scenario of counter-rotating dense molecular gas with innermost almost Keplerian rotation and outer slowly rotating (far below Keplerian) components. Our high-spatial-resolution dense molecular line data reveal that torus properties of NGC 1068 are much more complicated than the simple axisymmetrically rotating torus picture in the classical active galactic nucleus unification paradigm.
  •  
9.
  • Kawamuro, Taiki, et al. (författare)
  • AGN X-Ray Irradiation of CO Gas in NGC 2110 Revealed by Chandra and ALMA
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 895:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report spatial distributions of the Fe-K alpha line at 6.4 keV and the CO(J = 2-1) line at 230.538 GHz in NGC 2110, which are, respectively, revealed by Chandra and Atacama Large Millimeter/submillimeter Array (ALMA) at 05. A Chandra 6.2-6.5 keV to 3.0-6.0 keV image suggests that the Fe-K alpha emission extends preferentially in a northwest to southeast direction out to 3 '', or similar to 500 pc, on each side. Spatially resolved spectral analyses support this by finding significant Fe-K alpha emission lines only in the northwest and southeast regions. Moreover, their equivalent widths are found to be similar to 1.5 keV, indicative for the fluorescence by nuclear X-ray irradiation as the physical origin. By contrast, CO(J = 2-1) emission is weak therein. For quantitative discussion, we derive ionization parameters by following an X-ray dominated region (XDR) model. We then find them high enough to interpret the weakness as the result of X-ray dissociation of CO and/or H-2. Another possibility also remains that CO molecules follow a superthermal distribution, resulting in brighter emission in higher-J lines. Further follow-up observations are encouraged to draw a conclusion on what predominantly changes the interstellar matter properties and whether the X-ray irradiation eventually affects the surrounding star formation as active galactic nucleus (AGN) feedback.
  •  
10.
  • Kawamuro, Taiki, et al. (författare)
  • Hard X-Ray Irradiation Potentially Drives Negative AGN Feedback by Altering Molecular Gas Properties
  • 2021
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 257:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the role of active galactic nucleus (AGN) X-ray irradiation on the interstellar medium (ISM), we systematically analyzed Chandra and Atacama Large Millimeter/submillimeter Array CO (J = 2-1) data for 26 hard X-ray (>10 keV) selected AGNs at redshifts below 0.05. While Chandra unveils the distribution of X-ray-irradiated gas via Fe-K alpha emission, the CO (J = 2-1) observations reveal that of cold molecular gas. At high resolutions less than or similar to 1 '', we derive Fe-K alpha and CO (J = 2-1) maps for the nuclear 2 '' region and for the external annular region of 2 ''-4 '', where 2 '' is similar to 100-600 pc for most of our AGNs. First, focusing on the external regions, we find the Fe-K alpha emission for six AGNs above 2 sigma. Their large equivalent widths (greater than or similar to 1 keV) suggest a fluorescent process as their origin. Moreover, by comparing the 6-7 keV/3-6 keV ratio, as a proxy of Fe-K alpha, and CO (J = 2-1) images for three AGNs with the highest significant Fe-K alpha detections, we find a possible spatial separation. These suggest the presence of X-ray-irradiated ISM and the change in the ISM properties. Next, examining the nuclear regions, we find that (1) the 20-50 keV luminosity increases with the CO (J = 2-1) luminosity; (2) the ratio of CO (J = 2-1)/HCN (J = 1-0) luminosities increases with 20-50 keV luminosity, suggesting a decrease in the dense gas fraction with X-ray luminosity; and (3) the Fe-K alpha-to-X-ray continuum luminosity ratio decreases with the molecular gas mass. This may be explained by a negative AGN feedback scenario: the mass accretion rate increases with gas mass, and simultaneously, the AGN evaporates a portion of the gas, which possibly affects star formation.
  •  
11.
  • Nagai, H., et al. (författare)
  • The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations using the Atacama Large Millimeter/submillimeter Array of the CO(2-1), HCN(3-2), and HCO+(3-2) lines in the nearby radio galaxy/brightest cluster galaxy (BCG) NGC 1275 with a spatial resolution of similar to 20 pc. In previous observations, the CO(2-1) emission was detected as radial filaments lying in the east west direction on a kiloparsec scale. We resolved the inner filament and found that it cannot be represented by a simple infalling stream on a sub-kiloparsec scale. The observed complex nature of the filament resembles the cold gas structure predicted by numerical simulations of cold chaotic accretion. Within the central 100 pc, we detected a rotational disk of molecular gas whose mass is similar to 10(8) M-circle dot. This is the first evidence of the presence of a massive cold gas disk on this spatial scale for BCGs. A crude estimate suggests that the accretion rate of the cold gas can be higher than that of hot gas. The disk rotation axis is approximately consistent with the radio-jet axis. This probably suggests that the cold gas disk is physically connected to the innermost accretion disk, which is responsible for jet launching. We also detected absorption features in the HCN(3-2) and HCO+(3-2) spectra against the radio continuum emission mostly radiated by a jet of size similar to 1.2 pc. The absorption features are blueshifted from the systemic velocity by similar to 300-600 km s(-1), suggesting the presence of outflowing gas from the active galactic nucleus (AGN). We discuss the relation of the AGN feeding with cold accretion, the origin of blueshifted absorption, and an estimate of the black hole mass using molecular gas dynamics.
  •  
12.
  • Noboriguchi, Akatoki, et al. (författare)
  • Extreme Nature of Four Blue-excess Dust-obscured Galaxies Revealed by Optical Spectroscopy
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 941:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report optical spectroscopic observations of four blue-excess dust-obscured galaxies (BluDOGs) identified by the Subaru Hyper Suprime-Cam. BluDOGs are a subclass of dust-obscured galaxies (DOGs; defined with the extremely red color (i − [22])AB ≥ 7.0; Toba et al., showing a significant flux excess in the optical g and r bands over the power-law fits to the fluxes at the longer wavelengths. Noboriguchi et al. have suggested that BluDOGs may correspond to the blowing-out phase involved in a gas-rich major-merger scenario. However, the detailed properties of BluDOGs are not understood because of the lack of spectroscopic information. In this work, we carry out deep optical spectroscopic observations of four BluDOGs using Subaru/FOCAS and VLT/FORS2. The obtained spectra show broad emission lines with extremely large equivalent widths, and a blue wing in the C iv line profile. The redshifts are between 2.2 and 3.3. The averaged rest-frame equivalent widths of the C iv lines are 160 ± 33 Å, ∼7 times higher than the average of a typical type 1 quasar. The FWHMs of their velocity profiles are between 1990 and 4470 km s−1, and their asymmetric parameters are 0.05 and 0.25. Such strong C iv lines significantly affect the broadband magnitudes, which are partly the origin of the blue excess seen in the spectral energy distribution of BluDOGs. Their estimated supermassive black hole masses are 1.1 × 108 < M BH/M ⊙ <5.5 × 108. The inferred Eddington ratios of the BluDOGs are higher than 1 (1.1 < λ Edd < 3.8), suggesting that the BluDOGs are in a rapidly evolving phase of supermassive black holes.
  •  
13.
  • North, Eve V., et al. (författare)
  • WISDOM project – V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:1, s. 319-330
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-millimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2–1) emission line with a spatial resolution of 58 × 32 pc2 (0.18 arcsec × 0.1 arcsec). This resolution, combined with a channel width of 10 km s−1, allows us to well resolve the radius of the black hole sphere of influence (measured as RSOI = 316 pc = 0.98 arcsec), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward model the ALMA data cube with the KINEMATIC MOLECULAR SIMULATION (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure an SMBH mass of (4.2 ± 0.7) × 109 M, a F160W-band stellar mass-to-light ratio that varies from 2.8 ± 0.6 M/LF160W in the centre to 2.4 ± 0.3 M/LF160W at the outer edge of the disc and a molecular gas velocity dispersion of 8.3 ± 2.1 km s−1(all 3σ uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. This work demonstrates that low-J CO emission can resolve gas very close to the SMBH (≈ 140 000 Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations, as it can probe the same emitting material.
  •  
14.
  • North,, et al. (författare)
  • WISDOM project - VIII. Multiscale feedback cycles in the brightest cluster galaxy NGC 0708
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:4, s. 5179-5192
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-resolution (synthesized beam size 0 ''.088 x 0 ''.083 or 25 x 23 pc(2)) Atacama Large Millimetre/submillimetre Array (CO)-C-12(2-1) line and 236 GHz continuum observations, as well as 5 GHz enhanced Multi-Element Radio Linked Interferometer Network (e-MERLIN) continuum observations, of NGC 0708; the brightest galaxy in the low-mass galaxy cluster Abell 262. The line observations reveal a turbulent, rotating disc of molecular gas in the core of the galaxy, and a high-velocity, blueshifted feature approximate to 0.'' 4(approximate to 113pc) from its centre. The submillimetre continuum emission peaks at the nucleus, but extends towards this anomalous CO emission feature. No corresponding elongation is found on the same spatial scales at 5 GHz with e-MERLIN. We discuss potential causes for the anomalous blueshifted emission detected in this source, and conclude that it is most likely to be a low-mass in-falling filament of material condensing from the hot intracluster medium via chaotic cold accretion, but it is also possible that it is a jet-driven molecular outflow. We estimate the physical properties this structure has in these two scenarios, and show that either explanation is viable. We suggest future observations with integral field spectrographs will be able to determine the true cause of this anomalous emission, and provide further evidence for interaction between quenched cooling flows and mechanical feedback on both small and large scales in this source.
  •  
15.
  • Smith, Mark D., et al. (författare)
  • WISDOM project - VII. Molecular gas measurement of the supermassive black hole mass in the elliptical galaxy NGC 7052
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:4, s. 5984-5996
  • Tidskriftsartikel (refereegranskat)abstract
    • Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0.''.11 (37 pc) resolution in the (CO)-C-12(2-1) line and 1.3 mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of 2.5 +/- 0.3 x 10(9) M-circle dot and a stellar I-band mass-to-light ratio of 4.6 +/- 0.2 M-circle dot/L-circle dot,L-I (3 sigma confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.
  •  
16.
  • Terao, Koki, et al. (författare)
  • Multiline Assessment of Narrow-line Regions in z similar to 3 Radio Galaxies
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 929:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we use high-quality rest-UV spectra of three radio galaxies at z similar to 3 observed with the FORS2 camera on the Very Large Telescope to measure the flux of several emission lines, including relatively faint ones, such as N iv]lambda 1486, O iii]lambda 1663, and [Ne iv]lambda 2424. Additionally, we collect fluxes of faint rest-UV emission lines in 12 z similar to 3 radio galaxies from the literature. Previously, physical and chemical properties of narrow-line regions (NLRs) in high-z active galactic nuclei (AGNs) have been investigated mostly by using only strong rest-UV emission lines (e.g., N v lambda 1240, C iv lambda 1549, He ii lambda 1640, and C iii]lambda 1909). Such strong-line diagnostics are based on various assumptions due to the limitation in the number of available emission-line constraints. In this work, both physical and chemical properties of NLR clouds in each object are estimated by fitting detailed photoionization models to the measured emission-line fluxes. We confirm that the metallicity of NLRs in AGNs at z similar to 3 is solar or supersolar, without assumptions about the gas density and ionization parameter thanks to the constraints from the faint emission lines. This result suggests that high-z radio galaxies are already chemically mature at z similar to 3.
  •  
17.
  • Thater, Sabine, et al. (författare)
  • Cross-checking SMBH mass estimates in NGC 6958-I. Stellar dynamics from adaptive optics-assisted MUSE observations
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:4, s. 5416-5436
  • Tidskriftsartikel (refereegranskat)abstract
    • Supermassive black hole masses (M (BH)) can dynamically be estimated with various methods and using different kinematic tracers. Different methods have only been cross-checked for a small number of galaxies and often show discrepancies. To understand these discrepancies, detailed cross-comparisons of additional galaxies are needed. We present the first part of our cross-comparison between stellar- and gas-based M-BH estimates in the nearby fast-rotating early-type galaxy NGC 6958. The measurements presented here are based on ground-layer adaptive optics-assisted Multi-Unit Spectroscopic Explorer (MUSE) science verification data at around 0."6 spatial resolution. The spatial resolution is a key ingredient for the measurement and we provide a Gaussian parametrization of the adaptive optics-assisted point spread function for various wavelengths. From the MUSE data, we extracted the stellar kinematics and constructed dynamical models. Using an axisymmetric Schwarzschild technique, we measured an M-BH of (3.6(-2.4)(+2.7)) x10(8) M-circle dot at 3 sigma significance taking kinematical and dynamical systematics (e.g. radially varying mass-to-light ratio) into account. We also added a dark halo, but our data do not allow us to constrain the dark matter fraction. Adding dark matter with an abundance matching prior results in a 25 per cent more massive black hole. Jeans anisotropic models return M-BH of (4.6(-2.7)(+2.5)) x10(8) and (8.6(-0.8)(+0.8)) x10(8) M-circle dot at 3 sigma confidence for spherical and cylindrical alignments of the velocity ellipsoid, respectively. In a follow-up study, we will compare the stellar-based M (BH) with those from cold and warm gas tracers, which will provide additional constraints for the M-BH for NGC 6958, and insights into assumptions that lead to potential systematic uncertainty.
  •  
18.
  • Tsukui, Takafumi, et al. (författare)
  • Galactic dynamics and DM profile of NGC1380 with ALMA and VLT/MUSE
  • 2019
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 14:S353, s. 248-252
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to understand the interaction between dark matter and baryonic matter in the galaxy evolution history, it is fundamental to constrain dark matter (DM) distribution in galaxies. However, it is difficult to constrain DM profile in the central region of early type galaxy because of the lack of extended neutral hydrogen gas and the degeneracy between dynamical stellar M/L and DM profile. To resolve this difficulty, we conducted combined analysis of ALMA cold molecular gas kinematics and MUSE stellar kinematics of early type fast rotator galaxy NGC1380. In addition, we used HST image to trace the stellar luminosity distribution. With the help of high resolution of ALMA image and large field of view of MUSE, we derived the central BH mass, stellar bulge, disk and DM profile.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy