SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Op den Camp H. J. M.) "

Sökning: WFRF:(Op den Camp H. J. M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Risgaard-Petersen, N., et al. (författare)
  • Evidence for complete denitrification in a benthic foraminifer
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 443:7107, s. 93-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats(1), but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments(1-3), these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.
  •  
3.
  • Parmentier, Frans-Jan, et al. (författare)
  • The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 8:5, s. 1267-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the microbial processes governing methane emissions from tundra ecosystems is receiving increasing attention. Recently, cooperation between methanotrophic bacteria and submerged Sphagnum was shown to reduce methane emissions but also to supply CO2 for photosynthesis for the plant. Although this process was shown to be important in the laboratory, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum in the field have not been linked to these bacteria before. In this study, chamber flux measurements, an incubation study and a process model were used to investigate the drivers and controls on the relative difference in methane emissions between a submerged Sphagnum/sedge vegetation type and an inundated sedge vegetation type without Sphagnum. It was found that methane emissions in the Sphagnumdominated vegetation type were 50% lower than in the vegetation type without Sphagnum. A model sensitivity analysis showed that these differences could not sufficiently be explained by differences in methane production and plant transport. The model, combined with an incubation study, indicated that methane oxidation by endophytic bacteria, living in cooperation with submerged Sphagnum, plays a significant role in methane cycling at this site. This result is important for spatial upscaling as oxidation by these bacteria is likely involved in 15% of the net methane emissions at this tundra site. Our findings support the notion that methane-oxidizing bacteria are an important factor in understanding the processes behind methane emissions in tundra.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy