SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orbidans A.) "

Sökning: WFRF:(Orbidans A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
2.
  • Nimmo, K., et al. (författare)
  • Burst timescales and luminosities as links between young pulsars and fast radio bursts
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:3, s. 393-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to.
  •  
3.
  • Nimmo, K., et al. (författare)
  • A burst storm from the repeating FRB 20200120E in an M81 globular cluster
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2281-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The repeating fast radio burst (FRB) source FRB 20200120E is exceptional because of its proximity and association with a globular cluster. Here we report 60 bursts detected with the Effelsberg telescope at 1.4 GHz. We observe large variations in the burst rate, and report the first FRB 20200120E 'burst storm', where the source suddenly became active and 53 bursts (fluence ≥0.04 Jy ms) occurred within only 40 min. We find no strict periodicity in the burst arrival times, nor any evidence for periodicity in the source's activity between observations. The burst storm shows a steep energy distribution (power-law index α = 2.39 ± 0.12) and a bimodal wait-time distribution, with log-normal means of 0.94+0.07−0.06 s and 23.61+3.06−2.71 s. We attribute these wait-time distribution peaks to a characteristic event time-scale and pseudo-Poisson burst rate, respectively. The secondary wait-time peak at ∼1 s is ∼50 × longer than the ∼24 ms time-scale seen for both FRB 20121102A and FRB 20201124A - potentially indicating a larger emission region, or slower burst propagation. FRB 20200120E shows order-of-magnitude lower burst durations and luminosities compared with FRB 20121102A and FRB 20201124A. Lastly, in contrast to FRB 20121102A, which has observed dispersion measure (DM) variations of ΔDM > 1 pc cm−3 on month-to-year time-scales, we determine that FRB 20200120E's DM has remained stable (ΔDM < 0.15 pc cm−3) over >10 months. Overall, the observational characteristics of FRB 20200120E deviate quantitatively from other active repeaters, but it is unclear whether it is qualitatively a different type of source.
  •  
4.
  • Younes, George, et al. (författare)
  • X-Ray Burst and Persistent Emission Properties of the Magnetar SGR 1830-0645 in Outburst
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 924:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on NICER X-ray monitoring of the magnetar SGR 1830-0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: nu = 0.096008680(2) Hz, = -6.2(1) x 10(-14) Hz s(-1), and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8-7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum-the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy