SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orlovsky GN) "

Sökning: WFRF:(Orlovsky GN)

  • Resultat 1-50 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Archambault, PS, et al. (författare)
  • Non-undulatory locomotion in the lamprey
  • 2001
  • Ingår i: Neuroreport. - : Ovid Technologies (Wolters Kluwer Health). - 0959-4965. ; 12:9, s. 1803-1807
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  • Arshavsky, YI, et al. (författare)
  • Pattern generation
  • 1997
  • Ingår i: Current opinion in neurobiology. - : Elsevier BV. - 0959-4388. ; 7:6, s. 781-789
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  • Beloozerova, IN, et al. (författare)
  • Activity of pyramidal tract neurons in the cat during postural corrections
  • 2005
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 93:4, s. 1831-1844
  • Tidskriftsartikel (refereegranskat)abstract
    • The dorsal side-up body orientation in quadrupeds is maintained by a postural control system. We investigated participation of the motor cortex in this system by recording activity of pyramidal tract neurons (PTNs) from limb representations of the motor cortex during postural corrections. The cat was standing on the platform periodically tilting in the frontal plane, and maintained equilibrium at different body configurations: with the head directed forward (symmetrically alternating loading of the left and right fore limbs), or with the head voluntary turned to the right or to the left (asymmetrical loading). We found that postural corrective responses to tilts included an increase of the contact forces and activity of limb extensors on the side moving down, and their decrease on the opposite side. The activity of PTNs was strongly modulated in relation to the tilt cycle. Phases of activity of individual PTNs were distributed over the cycle. Thus the cortical output mediated by PTNs appeared closely related to a highly automatic motor activity, the maintenance of the body posture. An asymmetrical loading of limbs, caused by head turns, resulted in the corresponding changes of motor responses to tilts. These voluntary postural modifications were also well reflected in the PTNs' activity. The activity of a part of PTNs correlated well with contact forces, in some others with the limb muscle activity; in still others no correlation with these variables was observed. This heterogeneity of the PTNs population suggests a different functional role of individual PTNs.
  •  
7.
  •  
8.
  • Beloozerova, IN, et al. (författare)
  • Postural control in the rabbit maintaining balance on the tilting platform
  • 2003
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 90:6, s. 3783-3793
  • Tidskriftsartikel (refereegranskat)abstract
    • A deviation from the dorsal-side-up body posture in quadrupeds activates the mechanisms for postural corrections. Operation of these mechanisms was studied in the rabbit maintaining balance on a platform periodically tilted in the frontal plane. First, we characterized the kinematics and electromyographic (EMG) patterns of postural responses to tilts. It was found that a reaction to tilt includes an extension of the limbs on the side moving down and flexion on the opposite side. These limb movements are primarily due to a modulation of the activity of extensor muscles. Second, it was found that rabbits can effectively maintain the dorsal-side-up body posture when complex postural stimuli are applied, i.e., asynchronous tilts of the platforms supporting the anterior and posterior parts of the body. These data suggest that the nervous mechanisms controlling positions of these parts of the body can operate independently of each other. Third, we found that normally the somatosensory input plays a predominant role for the generation of postural responses. However, when the postural response appears insufficient to maintain balance, the vestibular input contributes considerably to activation of postural mechanisms. We also found that an asymmetry in the tonic vestibular input, caused by galvanic stimulation of the labyrinths, can affect the stabilized body orientation while the magnitude of postural responses to tilts remains unchanged. Fourth, we found that the mechanisms for postural corrections respond only to tilts that exceed a certain (threshold) value.
  •  
9.
  • Deliagina, TG, et al. (författare)
  • Activity of reticulospinal neurons during locomotion in the freely behaving lamprey
  • 2000
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 83:2, s. 853-863
  • Tidskriftsartikel (refereegranskat)abstract
    • The reticulospinal (RS) system is the main descending system transmitting commands from the brain to the spinal cord in the lamprey. It is responsible for initiation of locomotion, steering, and equilibrium control. In the present study, we characterize the commands that are sent by the brain to the spinal cord in intact animals via the reticulospinal pathways during locomotion. We have developed a method for recording the activity of larger RS axons in the spinal cord in freely behaving lampreys by means of chronically implanted macroelectrodes. In this paper, the mass activity in the right and left RS pathways is described and the correlations of this activity with different aspects of locomotion are discussed. In quiescent animals, the RS neurons had a low level of activity. A mild activation of RS neurons occurred in response to different sensory stimuli. Unilateral eye illumination evoked activation of the ipsilateral RS neurons. Unilateral illumination of the tail dermal photoreceptors evoked bilateral activation of RS neurons. Water vibration also evoked bilateral activation of RS neurons. Roll tilt evoked activation of the contralateral RS neurons. With longer or more intense sensory stimulation of any modality and laterality, a sharp, massive bilateral activation of the RS system occurred, and the animal started to swim. This high activity of RS neurons and swimming could last for many seconds after termination of the stimulus. There was a positive correlation between the level of activity of RS system and the intensity of locomotion. An asymmetry in the mass activity on the left and right sides occurred during lateral turns with a 30% prevalence (on average) for the ipsilateral side. Rhythmic modulation of the activity in RS pathways, related to the locomotor cycle, often was observed, with its peak coinciding with the electromyographic (EMG) burst in the ipsilateral rostral myotomes. The pattern of vestibular response of RS neurons observed in the quiescent state, that is, activation with contralateral roll tilt, was preserved during locomotion. In addition, an inhibition of their activity with ipsilateral tilt was clearly seen. In the cases when the activity of individual neurons could be traced during swimming, it was found that rhythmic modulation of their firing rate was superimposed on their tonic firing or on their vestibular responses. In conclusion, different aspects of locomotor activity—initiation and termination, vigor of locomotion, steering and equilibrium control—are well reflected in the mass activity of the larger RS neurons.
  •  
10.
  • Deliagina, TG, et al. (författare)
  • Asymmetrical effect of GABA on the postural orientation in Clione
  • 2000
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 84:3, s. 1673-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine mollusk Clione limacina, when swimming, normally stabilizes the vertical body orientation by means of the gravitational tail reflexes. Horizontal swimming or swimming along inclined ascending trajectories is observed rarely. Here we report that GABA injection into intact Clione resulted in a change of the stabilized orientation and swimming with a tilt of ∼45° to the left. The analysis of modifications in the postural network underlying this effect was done with in vitro experiments. The CNS was isolated together with the statocysts. Spike discharges in the axons of two groups of motoneurons responsible for the left and right tail flexion, as well as in the axons of CPB3 interneurons mediating signals from the statocyst receptors to the motoneurons, were recorded extracellularly when the preparation was rotated in space. Normally the tail motoneurons of the left and right groups were activated with the contralateral tilt of the preparation. Under the effect of GABA, the gravitational responses in the right group of motoneurons and in the corresponding interneurons were dramatically reduced while the responses in the left group remained unchanged. The most likely site of the inhibitory GABA action is the interneurons mediating signals from the statocysts to the right group of tail motoneurons. The GABA-induced asymmetry of the left and right gravitational tail reflexes, observed in the in vitro experiments, is consistent with a change of the stabilized orientation caused by GABA in the intact Clione.
  •  
11.
  •  
12.
  •  
13.
  • Deliagina, TG, et al. (författare)
  • Control of spatial orientation in a mollusc
  • 1998
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 393:6681, s. 172-175
  • Tidskriftsartikel (refereegranskat)
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Deliagina, TG, et al. (författare)
  • Neural bases of postural control
  • 2006
  • Ingår i: Physiology (Bethesda, Md.). - : American Physiological Society. - 1548-9213 .- 1548-9221. ; 21, s. 216-225
  • Tidskriftsartikel (refereegranskat)abstract
    • The body posture during standing and walking is maintained due to the activity of a closed-loop control system. In the review, we consider different aspects of postural control: its functional organization, the distribution of postural functions in different parts of the central nervous system, and the activity of neuronal networks controlling posture.
  •  
18.
  • Deliagina, TG, et al. (författare)
  • Neuronal mechanisms for the control of body orientation in Clione I. Spatial zones of activity of different neuron groups
  • 1999
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 82:2, s. 687-699
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine mollusk Clione limacina,when swimming, can stabilize different body orientations in the gravitational field. Here we describe one of the modes of operation of the postural network in Clione—maintenance of the vertical, head-up orientation. Experiments were performed on the CNS-statocyst preparation. Spike discharges in the axons of different types of neurons were recorded extracellularly when the preparation was rotated in space through 360° in different planes. We characterized the spatial zones of activity of the tail and wing motor neurons as well as of the CPB3 interneurons mediating the effects of statocyst receptor cells on the tail motor neurons. It was found that the activity of the tail motor neurons increased with deviation of the preparation from the normal, rostral-side-up orientation. Their zones of activity were very wide (∼180°). According to the zone position, three distinct groups of tail motor neuron (T1–T3) could be distinguished. The T1 group had a center of the zone near the ventral-side-up orientation, whereas the zones of T2 and T3 had their centers near the left-side-up and the right-side-up positions, respectively. By comparing the zone of activity with the direction of tail bending elicited by each of the groups, one can conclude that gravitational reflexes mediated by the T1, T2, and T3 groups will evoke turning of the animal toward the head-up orientation. Two identified wing motor neurons, 1A and 2A, causing the wing beating, were involved in gravitational reactions. They were activated with the downward inclination of the ipsilateral side. Opposite reactions were observed in the motor neurons responsible for the wing retraction. A presumed motor effect of these reactions is an increase of oscillations in the wing that is directed downward and turning of Clionetoward the head-up orientation. Among the CPB3 interneurons, at least four groups could be distinguished. In three of them (IN1, IN2, and IN3), the zones of activity were similar to those of the three groups (T1, T2, and T3) of the tail motor neurons. The group IN4 had the center of its zone in the dorsal-side-up position; a corresponding group was not found among the tail motor neurons. In lesion experiments, it was found that gravitational input mediated by a single CPB3 interneuron produced activation of its target tail motor neurons in their normal zones, but the strength of response was reduced considerably. This finding suggests that several interneurons with similar spatial zones converge on individual tail motor neurons. In conclusion, because of a novel method, activity of the neuronal network responsible for the postural control in Clione was characterized in the terms of gravitational responses in different neuron groups comprising the network.
  •  
19.
  • Deliagina, TG, et al. (författare)
  • Neuronal mechanisms for the control of body orientation in clione II. Modifications in the activity of postural control system
  • 2000
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 83:1, s. 367-373
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine mollusk Clione limacina, when swimming, can stabilize different body orientations in the gravitational field. The stabilization is based on the reflexes initiated by activation of the statocyst receptor cells and mediated by the cerebro-pedal interneurons that produce excitation of the motoneurons of the effector organs; tail and wings. Here we describe changes in the reflex pathways underlying different modes of postural activity; the maintenance of the head-up orientation at low temperature, the maintenance of the head-down orientation at higher temperature, and a complete inactivation of the postural mechanisms during defense reaction. Experiments were performed on the CNS-statocyst preparation. Spike discharges in the axons of different types of neurons were recorded extracellularly while the preparation was rotated in space through 360° in different planes. We characterized the spatial zones of activity of the tail and wing motoneurons and the CPB3 interneurons mediating the effects of statocyst receptor cells on the tail motoneurons. This was done at different temperatures (10 and 20°C). The “fictive” defense reaction was evoked by electrical stimulation of the head nerve. At 10°C, a tilt of the preparation evoked activation in the tail motoneurons and wing retractor motoneurons contralateral to the tilt and in the wing locomotor motoneurons ipsilateral to the tilt. At 20°C, the responses in the tail motoneurons and in the wing retractor motoneurons occurred reversed; these neurons were now activated with the ipsilateral tilt. In the wing locomotor motoneurons the responses at 20°C were suppressed. During the defense reaction, gravitational responses in all neuron types were suppressed. Changes in the chains of tail reflexes most likely occurred at the level of connections from the statocyst receptor cells to the CPB3 interneurons. The changes in gravitational reflexes revealed in the present study are sufficient to explain the corresponding modifications of the postural behavior in Clione.
  •  
20.
  •  
21.
  • Deliagina, TG, et al. (författare)
  • Role of different sensory inputs for maintenance of body posture in sitting rat and rabbit
  • 2000
  • Ingår i: Motor control. - : Human Kinetics. - 1087-1640 .- 1543-2696. ; 4:4, s. 439-452
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we describe the postural activity in sitting rats and rabbits. An animal was positioned on the platform that could be tilted in the frontal plane for up to ±20-30°, and postural corrections were video recorded. We found that in both rat and rabbit, the postural reactions led to stabilization of the dorsal-side-up trunk orientation. The result of this was that the trunk tilt constituted only ~50% (rat) and 25% (rabbit) of the platform tilt. In addition, in the rabbit the head orientation was also stabilized. Trunk stabilization persisted in the animals subjected to the bilateral labyrinthectomy and blindfolding, suggesting that the somatosensory input is primarily responsible for trunk stabilization. Trunk stabilization was due to extension of the limbs on the side moving down, and flexion of the opposite limbs. EMG recordings showed that the limb extension was caused by the active contraction of extensor muscles. We argue that signals from the Golgi tendon organs of the extensor muscles may considerably contribute to elicitation of postural corrective responses to the lateral tilt.
  •  
22.
  •  
23.
  • Fagerstedt, P, et al. (författare)
  • Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns
  • 2001
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 86:5, s. 2257-2265
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the neural correlates of turning movements during fictive locomotion in a lamprey in vitro brain–spinal cord preparation. Electrical stimulation of the skin on one side of the head was used to evoke fictive turns. Intracellular recordings were performed from reticulospinal cells in the middle (MRRN) and posterior (PRRN) rhombencephalic reticular nuclei, and from Mauthner cells, to characterize the pattern of activity in these cell groups, and their possible functional role for the generation of turns. All recorded reticulospinal neurons modified their activity during turns. Many cells in both the rostral and the caudal MRRN, and Mauthner cells, were strongly excited during turning. The level of activity of cells in rostral PRRN was lower, while the lowest degree of activation was found in cells in caudal PRRN, suggesting that MRRN may play a more important role for the generation of turning behavior. The sign of the response (i.e., excitation or inhibition) to skin stimulation of a neuron during turns toward (ipsilateral), or away from (contralateral) the side of the cell body was always the same. The cells could thus be divided into four types: 1) cells that were excited during ipsilateral turns and inhibited during contralateral turns; these cells provide an asymmetric excitatory bias to spinal networks and presumably play an important role for the generation of turns; these cells were common ( n = 35; 52%) in both MRRN and PRRN; 2) cells that were excited during turns in either direction; these cells were common ( n = 19; 28%), in particular in MRRN; they could be involved in a general activation of the locomotor system after skin stimulation; some of the cells were also more activated during turns in one direction and could contribute to an asymmetric turn command; 3) one cell that was inhibited during ipsilateral turns and excited during contralateral turns; and 4) cells ( n = 12; 18%) that were inhibited during turns in either direction. In summary, our results show that, in the lamprey, the large majority of reticulospinal cells have responses during lateral turns that are indicative of a causal role for these cells in turn generation. This also suggests a considerable overlap between the command system for lateral turns evoked by skin stimulation, which was studied here, and other reticulospinal command systems, e.g., for lateral turns evoked by other types of stimuli, initiation of locomotion, and turns in the vertical planes.
  •  
24.
  •  
25.
  •  
26.
  • Hsu, LJ, et al. (författare)
  • Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network
  • 2012
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 1522-1598 .- 0022-3077. ; 108:1, s. 300-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were performed on decerebrate rabbits. The vertebral column was rigidly fixed, whereas hindlimbs were positioned on a platform. Periodic lateral tilts of the platform caused postural limb reflexes (PLRs): activation of extensors in the loaded and flexing limb and a decrease in extensor activity in the opposite (unloaded and extending) limb. Putative spinal interneurons were recorded in segments L4–L5 during PLRs, with and without GVS. We have found that GVS enhanced PLRs on the cathode side and reduced them on the anode side. This asymmetry in PLRs can account for changes in the stabilized body orientation observed in normal rabbits subjected to continuous GVS. Responses to platform tilts (frequency modulation) were observed in 106 spinal neurons, suggesting that they can contribute to PLR generation. Two neuron groups were active in opposite phases of the tilt cycle of the ipsi-limb: F-neurons in the flexion phase, and E-neurons in the extension phase. Neurons were driven mainly by afferent input from the ipsi-limb. If one supposes that F- and E-neurons contribute, respectively, to excitation and inhibition of extensor motoneurons, one can expect that the pattern of response to GVS in F-neurons will be similar to that in extensor muscles, whereas E-neurons will have an opposite pattern. We have found that ∼40% of all modulated neurons meet this condition, suggesting that they contribute to the generation of PLRs and to the GVS-caused changes in PLRs.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Islam, SS, et al. (författare)
  • Pattern of motor coordination underlying backward swimming in the lamprey
  • 2006
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 96:1, s. 451-460
  • Tidskriftsartikel (refereegranskat)abstract
    • The main form of locomotion in the lamprey (a lower vertebrate, cyclostome) is forward swimming (FS) based on periodical waves of lateral body flexion propagating from head to tail. The lamprey is also capable of backward swimming (BS). Here we describe the kinematical and electromyographic (EMG) pattern of BS, as well as the effects on this pattern exerted by different lesions of the spinal cord. The BS was evoked by tactile stimulation of a large area in the anterior part of the body. Swimming was attributed to the waves of lateral body undulations propagating from tail to head. The EMG bursts on the two sides alternated, and the EMG in more caudal segments led in phase the EMG in more rostral segments. Main kinematical characteristics of BS strongly differed from those of FS: the amplitude of undulations was much larger and their frequency lower. Also, the maintenance of the dorsal-side-up body orientation ascribed to vestibular postural reflexes (typical for FS) was not observed during BS. A complete transection of the spinal cord did not abolish the generation of forward-propagating waves rostral to the lesion. After a lateral hemisection of the spinal cord, the BS pattern persisted on both sides rostral to the lesion; caudal to the lesion, it was present on the intact side and reduced or abolished on the lesioned side. The role of the spinal cord in generation of different forms of undulatory locomotion (FS and BS) is discussed.
  •  
31.
  •  
32.
  •  
33.
  • Karayannidou, A, et al. (författare)
  • Maintenance of lateral stability during standing and walking in the cat
  • 2009
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 101:1, s. 8-19
  • Tidskriftsartikel (refereegranskat)abstract
    • During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).
  •  
34.
  • Karayannidou, A, et al. (författare)
  • Responses of reticulospinal neurons in the lamprey to lateral turns
  • 2007
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 97:1, s. 512-521
  • Tidskriftsartikel (refereegranskat)abstract
    • When swimming, the lamprey maintains a definite orientation of its body in the vertical planes, in relation to the gravity vector, as the result of postural vestibular reflexes. Do the vestibular-driven mechanisms also play a role in the control of the direction of swimming in the horizontal (yaw) plane, in which the gravity cannot be used as a reference direction? In the present study, we addressed this question by recording responses to lateral turns in reticulospinal (RS) neurons mediating vestibulospinal reflexes. In intact lampreys, the activity of axons of RS neurons was recorded in the spinal cord by implanted electrodes. Vestibular stimulation was performed by periodical turns of the animal in the yaw plane (60° peak to peak). It was found that the majority of responding RS neurons were activated by the contralateral turn. By removing one labyrinth, we found that yaw responses in RS neurons were driven mainly by input from the contralateral labyrinth. We suggest that these neurons, when activated by the contralateral turn, will elicit the ipsilateral turn and thus will compensate for perturbations of the rectilinear swimming caused by external factors. It is also known that unilateral eye illumination elicits a contralateral turn in the yaw plane (negative phototaxis). We found that a portion of RS neurons were activated by the contralateral eye illumination. By eliciting an ipsilateral turn, these neurons could mediate the negative phototaxis.
  •  
35.
  • Lyalka, VF, et al. (författare)
  • Effect of intrathecal administration of serotoninergic and noradrenergic drugs on postural performance in rabbits with spinal cord lesions
  • 2008
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 100:2, s. 723-732
  • Tidskriftsartikel (refereegranskat)abstract
    • Our previous studies have shown that extensive spinal lesions at T12 in the rabbit [ventral hemisection (VHS) or 3/4-section that spares one ventral quadrant (VQ)] severely damaged the postural system. When tested on the platform periodically tilted in the frontal plane, VHS and VQ animals typically were not able to perform postural corrective movements by their hindlimbs, although EMG responses (correctly or incorrectly phased) could be observed. We attempted to restore postural control in VHS and VQ rabbits by applying serotoninergic and noradrenergic drugs to the spinal cord below the lesion through the intrathecal cannula. It was found that serotonin and quipazine (5-HT1,2,3 agonist) did not re-establish postural corrective movements. However, when applied during a 10-day period after lesion, these drugs produced a twofold increase of the proportion of correct EMG responses to tilts. It was also found that methoxamine (α1 noradrenergic agonist), as well as the mixture of methoxamine and quipazine, did not re-establish postural corrective movements and did not increase the proportion of correct EMG responses. Serotonin (at later stages) and methoxamine induced periodical bursting in EMGs, suggesting activation of spinal rhythm-generating networks. Appearance of bursting seems to perturb normal operation of postural mechanisms, as suggested by methoxamine-induced abolishment of postural effects of quipazine. When applied in an intact animal, none of the tested drugs affected the value of postural corrections or evoked periodical bursting. We conclude that activation of the serotoninergic system (but not the noradrenergic one) causes selective enhancement of spinal postural reflexes during the earlier postlesion period.
  •  
36.
  • Lyalka, VF, et al. (författare)
  • Facilitation of postural limb reflexes in spinal rabbits by serotonergic agonist administration, epidural electrical stimulation, and postural training.
  • 2011
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598.
  • Tidskriftsartikel (refereegranskat)abstract
    • In quadrupeds, spinalization in the thoracic region severely impairs postural control in the hindquarters. The goal of this study was to improve postural functions in chronic spinal rabbits by regular application of different factors: intrathecal injection of the 5-HT(2) agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), epidural electrical spinal cord stimulation (EES), and specific postural training (SPT). The factors were used either alone (SPT group) or in combination (DOI+SPT, EES+SPT, and DOI+EES+SPT groups) or not used (control group). It was found that in none of these groups did normal postural corrective movements in response to lateral tilts of the supporting platform reappear within the month of treatment. In control group, reduced irregular electromyographic (EMG) responses, either correctly or incorrectly phased in relation to tilts, were observed. By contrast, in DOI+SPT and EES+SPT groups, a gradual threefold increase in the proportion of correctly phased EMG responses (compared with control) was observed. The increase was smaller in DOI+EES+SPT and SPT groups. Dissimilarly to these long-term effects, short-term effects of DOI and EES were weak or absent. In addition, gradual development of oscillatory EMG activity in the responses to tilts, characteristic for the control group, was retarded in DOI+SPT, EES+SPT, DOI+EES+SPT, and SPT groups. Thus regular application of the three tested factors and their combinations caused progressive, long-lasting plastic changes in the isolated spinal networks, resulting in the facilitation of spinal postural reflexes and in the retardation of the development of oscillatory EMG activity. The facilitated reflexes, however, were insufficient for normal postural functions.
  •  
37.
  • Lyalka, VF, et al. (författare)
  • Impairment and recovery of postural control in rabbits with spinal cord lesions
  • 2005
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 94:6, s. 3677-3690
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to characterize impairment and subsequent recovery of postural control after spinal cord injuries. Experiments were carried out on rabbits with three types of lesion—a dorsal (D), lateral (L), or ventral (V) hemisection (HS) at T12 level. The animals were maintaining equilibrium on a platform periodically tilted in the frontal plane. We assessed the postural limb/trunk configuration from video recordings and postural reflexes in the hindquarters from kinematical and electromyographic (EMG) recordings. We found that for a few days after DHS or LHS, the animals were not able to maintain the dorsal-side-up position of their hindquarters. This ability was then gradually restored, and the dynamic postural reflexes reached the prelesion value within 2–3 wk. By contrast, a VHS almost completely abolished postural reflexes, and they did not recover for ≥7 wk. The DHS, LHS, and VHS caused immediate and slowly compensated changes in the postural limb/trunk configuration as well as gradually developing changes. After DHS, both hind limbs were placed in an abnormal rostral and medial position. After LHS, the limb on the undamaged side was turned inward and occurred at the abnormal medial position; LHS also caused a gradually developing twisting of the caudal trunk. VHS caused gradually developing extension of the ankle and knee joints. These findings show that ventral spinal pathways are of crucial importance for postural control. When a part of these pathways is spared, postural reflexes can be restored rapidly, but not the postural limb/trunk configuration. Spinal and supraspinal mechanisms responsible for postural deficits and their compensation are discussed.
  •  
38.
  • Lyalka, VF, et al. (författare)
  • Impairment of postural control in rabbits with extensive spinal lesions
  • 2009
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 101:4, s. 1932-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant.
  •  
39.
  • Musienko, PE, et al. (författare)
  • Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits
  • 2010
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 1522-1598 .- 0022-3077. ; 103:2, s. 1080-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • It is known that after spinalization animals lose their ability to maintain lateral stability when standing or walking. A likely reason for this is a reduction of the postural limb reflexes (PLRs) driven by stretch and load receptors of the limbs. The aim of this study was to clarify whether spinal networks contribute to the generation of PLRs. For this purpose, first, PLRs were recorded in decerebrated rabbits before and after spinalization at T12. Second, the effects of epidural electrical stimulation (EES) at L7 on the limb reflexes were studied after spinalization. To evoke PLRs, the vertebrate column of the rabbit was fixed, whereas the hindlimbs were positioned on the platform. Periodic lateral tilts of the platform caused antiphase flexion–extension limbs movements, similar to those observed in intact animals keeping balance on the tilting platform. Before spinalization, these movements evoked PLRs: augmentation of extensor EMGs and increase of contact force during limb flexion, suggesting their stabilizing postural effects. Spinalization resulted in almost complete disappearance of PLRs. After EES, however, the PLRs reappeared and persisted for up to several minutes, although their values were reduced. The post-EES effects could be magnified by intrathecal application of quipazine (5-HT agonist) at L4–L6. Results of this study suggest that the spinal cord contains the neuronal networks underlying PLRs; they can contribute to the maintenance of lateral stability in intact subjects. In acute spinal animals, these networks can be activated by EES, suggesting that they are normally activated by a tonic supraspinal drive.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • PANCHIN, YV, et al. (författare)
  • Control of locomotion in marine mollusk Clione Limacina. IX. Neuronal mechanisms of spatial orientation
  • 1995
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 73:5, s. 1924-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. When swimming freely, the pteropod mollusk Clione limacina actively maintains a vertical orientation, with its head up. Any deflection from the vertical position causes a correcting motor response, i.e., bending of the tail in the opposite direction, and an additional activation of the locomotor system. Clione can stabilize not only the vertical orientation with its head up, but also the posture with its head down. The latter is observed at higher water temperature, as well as at a certain stage of hunting behavior. The postural control is absent in some forms of behavior (vertical migrations, defensive reactions, "looping" when hunting). The postural reflexes are driven by input from the statocysts. After removal of the statocysts, Clione was unable to maintain any definite spatial orientation. 2. Activity of the neuronal mechanisms controlling spatial orientation of Clione was studied in in vitro experiments, with the use of a preparation consisting of the CNS and statocysts. Natural stimulation (tilt of the preparation up to 90 degrees) was used to characterize responses in the statocyst receptor cells (SRCs). It was found that the SRCs depolarized and fired (10-20 Hz) when, during a tilt, they were in a position on the bottom part of the statocyst, under the statolith. Intracellular staining has shown that the SRC axons terminate in the medial area of the cerebral ganglia. Electrical connections have been found between some of the symmetrical SRCs of the left and right statocysts. 3. Gravistatic reflexes were studied by using both natural stimulation (tilt of the preparation) and electrical stimulation of SRCs. The reflex consisted of three components: 1) activation of the locomotor rhythm generator located in the pedal ganglia; this effect of SRCs is mediated by previously identified CPA1 and CPB1 interneurons that are located in the cerebral ganglia and send axons to the pedal ganglia; 2) bending the tail evoked by differential excitation and inhibition of different groups of tail muscle motor neurons; this effect is mediated by CPB3 interneurons; and 3) modification of wing movements by differential excitation and inhibition of different groups of wing motor neurons; this effect is mediated by CPB2 interneurons. 4. Gravistatic reflexes in the tail motor neurons were inhibited or reversed at a higher water temperature. 5. The SRCs are not "pure" gravitation sensory organs because they are subjected to strong influences from the CNS. In particular, CPC1 interneurons, participating in coordination of different aspects of the hunting behavior, exert an excitatory action on some of the SRCs, and inhibitory actions on others.(ABSTRACT TRUNCATED AT 400 WORDS)
  •  
44.
  • PANCHIN, YV, et al. (författare)
  • Control of locomotion in marine mollusk Clione limacina. VIII. Cerebropedal neurons
  • 1995
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 73:5, s. 1912-1923
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The pteropod mollusk Clione limacina swims by rhythmical oscillations of two wings, and its spatial orientation during locomotion is determined by tail movements. The majority of neurons responsible for generation of the wing and tail movements are located in the pedal ganglia. On the other hand, the majority of sensory inputs that affect wing and tail movements project to the cerebral ganglia. The goal of the present study was to identify and characterize cerebropedal neurons involved in the control of the swimming central generator or motor neurons of wing and tail muscles. Cerebropedal neurons affecting locomotion-controlling mechanisms are located in the rostromedial (CPA neurons), caudomedial (CPB neurons), and central (CPC neurons) zones of the cerebral ganglia. According to their morphology and effects on pedal mechanisms, 10 groups of the cerebropedal neurons can be distinguished. 2. CPA1 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. Activation of a CPA1 by current injection resulted in speeding up of the locomotor rhythm and intensification of the firing of the locomotor motor neurons. 3. CPA2 neurons send numerous thin fibers into the ipsi- and contralateral pedal and pleural ganglia through the cerebropedal and cerebropleural connectives. They strongly inhibit the wing muscle motor neurons and, to a lesser extent, slow down the locomotor rhythm. 4. CPB1 neurons project through the contralateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 5. CPB2 neurons also project, through the contralateral cerebropedal connective, to both pedal ganglia. They affect wing muscle motor neurons. 6. CPB3 neurons have diverse morphology: they project to the pedal ganglia either through the ipsilateral cerebropedal connective, or through the contralateral one, or through both of them. They affect putative motor neurons of the tail muscles. 7. CPC1, CPC2, and CPC3 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 8. CPC4 and CPC5 neurons project through the contralateral cerebropedal connective to the contralateral pedal ganglia. They activate the locomotor generator. 9. Serotonergic neurons were mapped in the CNS of Clione by immunohistochemical methods. Location and size of cells in two groups of serotonin-immunoreactive neurons in the cerebral ganglia appeared to be similar to those of CPA1 and CPB1 neurons. This finding suggests a possible mechanism for serotonin's ability to exert a strong excitatory action on the locomotor generator of Clione. 10. The role of different groups of cerebropedal neurons is discussed in relation to different forms of Clione's behavior in which locomotor activity is involved.
  •  
45.
  •  
46.
  • Pavlova, EL, et al. (författare)
  • Vestibular compensation in lampreys: restoration of symmetry in reticulospinal commands
  • 2004
  • Ingår i: The Journal of experimental biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 207:26Pt 26, s. 4595-4603
  • Tidskriftsartikel (refereegranskat)abstract
    • Removal of a vestibular organ (unilateral labyrinthectomy, UL) in the lamprey results in a loss of equilibrium, so that the animal rolls (rotates around its longitudinal axis) when swimming. Owing to vestibular compensation,UL animals gradually restore postural equilibrium and, in a few weeks, swim without rolling. Important elements of the postural network in the lamprey are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections to the spinal cord. As shown previously, a loss of equilibrium after UL is associated with disappearance of vestibular responses in the contralateral group of RS neurons. Are these responses restored in animals after compensation? To answer this question, we recorded vestibular responses in RS neurons (elicited by rotation of the compensated animal in the roll plane) by means of chronically implanted electrodes. We found that the responses re-appeared in the compensated animals. This result supports the hypothesis that the loss of equilibrium after UL was caused by asymmetry in supraspinal motor commands, and the recovery of postural control in compensated animals was due to a restoration of symmetry.
  •  
47.
  •  
48.
  •  
49.
  • Ullen, F, et al. (författare)
  • Visual pathways for postural control and negative phototaxis in lamprey
  • 1997
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 78:2, s. 960-976
  • Tidskriftsartikel (refereegranskat)abstract
    • Ullén, Fredrik, Tatiana G. Deliagina, Grigori N. Orlovsky, and Sten Grillner. Visual pathways for postural control and negative phototaxis in lamprey. J. Neurophysiol. 78: 960–976, 1997. The functional roles of the major visuo-motor pathways were studied in lamprey. Responses to eye illumination were video-recorded in intact and chronically lesioned animals. Postural deficits during spontaneous swimming were analyzed to elucidate the roles of the lesioned structures for steering and postural control. Eye illumination in intact lampreys evoked the dorsal light response, that is, a roll tilt toward the light, and negative phototaxis, that is a lateral turn away from light, and locomotion. Complete tectum-ablation enhanced both responses. During swimming, a tendency for roll tilts and episodes of vertical upward swimming were seen. The neuronal circuitries for dorsal light response and negative phototaxis are thus essentially extratectal. Responses to eye illumination were abolished by contralateral pretectum-ablation but normal after the corresponding lesion on the ipsilateral side. Contralateral pretectum thus plays an important role for dorsal light response and negative phototaxis. To determine the roles of pretectal efferent pathways for the responses, animals with a midmesencephalichemisection were tested. Noncrossed pretecto-reticular fibers from the ipsilateral pretectum and crossed fibers from the contralateral side were transected. Eye illumination on the lesioned side evoked negative phototaxis but no dorsal light response. Eye illumination on the intact side evoked an enhanced dorsal light response, whereas negative phototaxis was replaced with straight locomotion or positive phototaxis. The crossed pretecto-reticular projection is thus most important for the dorsal light response, whereas the noncrossed projection presumably plays the major role for negative phototaxis. Transection of the ventral rhombencephalic commissure enhanced dorsal light response; negative phototaxis was retained with smaller turning angles than normal. Spontaneous locomotion showed episodes of backward swimming and deficient roll control (tilting tendency). Transections of different spinal pathways were performed immediately caudal to the brain stem. All spinal lesions left dorsal light response in attached state unaffected; this response presumably is mediated by the brain stem. Spinal hemisection impaired all ipsiversive yaw turns; the animals spontaneously rolled to the intact side. Bilateral transection of the lateral columns impaired all yaw turns, whereas roll control and dorsal light response were normal. After transection of the medial spinal cord, yaw turns still could be performed whereas dorsal light response was suppressed or abolished, and a roll tilting tendency during spontaneous locomotion was seen. We conclude that the contralateral optic nerve projection to the pretectal region is necessary and sufficient for negative phototaxis and dorsal light response. The crossed descending pretectal projection is most important for dorsal light response, whereas the noncrossed one is most important for negative phototaxis. In the most rostral spinal cord, fibers for lateral yaw turns travel mainly in the lateral columns, whereas fibers for roll turns travel mainly in the medial spinal cord.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy