SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oropesa Nuñez Reinier) "

Sökning: WFRF:(Oropesa Nuñez Reinier)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellani, Sebastiano, et al. (författare)
  • Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments
  • 2021
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 33:11, s. 4106-4121
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of high-power density vanadium redox flow batteries (VRFBs) with high energy efficiencies (EEs) is crucial for the widespread dissemination of this energy storage technology. In this work, we report the production of novel hierarchical carbonaceous nanomaterials for VRFB electrodes with high catalytic activity toward the vanadium redox reactions (VO2+/VO2+ and V2+/V3+). The electrode materials are produced through a rapid (minute timescale) low-pressure combined gas plasma treatment of graphite felts (GFs) in an inductively coupled radio frequency reactor. By systematically studying the effects of either pure gases (O-2 and N-2) or their combination at different gas plasma pressures, the electrodes are optimized to reduce their kinetic polarization for the VRFB redox reactions. To further enhance the catalytic surface area of the electrodes, single-/fewlayer graphene, produced by highly scalable wet-jet milling exfoliation of graphite, is incorporated into the GFs through an infiltration method in the presence of a polymeric binder. Depending on the thickness of the proton-exchange membrane (Nafion 115 or Nafion XL), our optimized VRFB configurations can efficiently operate within a wide range of charge/discharge current densities, exhibiting energy efficiencies up to 93.9%, 90.8%, 88.3%, 85.6%, 77.6%, and 69.5% at 25, 50, 75, 100, 200, and 300 mA cm(-2), respectively. Our technology is cost-competitive when compared to commercial ones (additional electrode costs < 100 (sic) m(-2)) and shows EEs rivalling the record-high values reported for efficient systems to date. Our work remarks on the importance to study modified plasma conditions or plasma methods alternative to those reported previously (e.g., atmospheric plasmas) to improve further the electrode performances of the current VRFB systems.
  •  
2.
  • Beydaghi, Hossein, et al. (författare)
  • Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:10, s. 6368-6381
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm(-1), a methanol permeability of 2.66 x 10(-7) cm(2) s(-1), and a selectivity of 36.18 x 10(4) S s cm(-3). Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm(-2) and 161.18 mW cm(-2) at 30 degrees C and 80 degrees C, respectively, which are similar to 78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.
  •  
3.
  • Beydaghi, Hossein, et al. (författare)
  • Sulfonated NbS2-based proton-exchange membranes for vanadium redox flow batteries
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:16, s. 6152-6161
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (sigma) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 x 10(-7) to 2.34 x 10(-7) cm(2) min(-1). Meanwhile, it increases the membrane sigma and selectivity up to 94.35 mS cm(-2) and 40.32 x 10(4) S min cm(-3), respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm(-2), delivering a maximum power density of 0.83 W cm(-2) at a current density of 870 mA cm(-2). The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm(-2). This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
  •  
4.
  • Bianca, Gabriele, et al. (författare)
  • Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:43, s. 48598-48613
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW(-1) (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.
  •  
5.
  • Chatzimanolis, Konstantinos, et al. (författare)
  • Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer
  • 2021
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry. - 2516-0230. ; 3:11, s. 3124-3135
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSCs) have proved their potential for delivering high power conversion efficiencies (PCE) alongside low fabrication cost and high versatility. The stability and the PCE of PSCs can readily be improved by implementing engineering approaches that entail the incorporation of two-dimensional (2D) materials across the device's layered configuration. In this work, two-dimensional (2D) 6R-TaS2 flakes were exfoliated and incorporated as a buffer layer in inverted PSCs, enhancing the device's PCE, lifetime and thermal stability. A thin buffer layer of 6R-TaS2 flakes was formed on top of the electron transport layer to facilitate electron extraction, thus improving the overall device performance. The optimized devices reach a PCE of 18.45%, representing a 12% improvement compared to the reference cell. The lifetime stability measurements of the devices under ISOS-L2, ISOS-D1, ISOS-D1I and ISOS-D2I protocols revealed that the TaS2 buffer layer retards the intrinsic, thermally activated degradation processes of the PSCs. Notably, the devices retain more than the 80% of their initial PCE over 330 h under continuous 1 Sun illumination at 65 degrees C.
  •  
6.
  • Errico, Silvia, et al. (författare)
  • Quantitative Measurement of the Affinity of Toxic and Nontoxic Misfolded Protein Oligomers for Lipid Bilayers and of its Modulation by Lipid Composition and Trodusquemine
  • 2021
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 12:17, s. 3189-3202
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neurodegenerative diseases are associated with the self-assembly of peptides and proteins into fibrillar aggregates. Soluble misfolded oligomers formed during the aggregation process, or released by mature fibrils, play a relevant role in neurodegenerative processes through their interactions with neuronal membranes. However, the determinants of the cytotoxicity of these oligomers are still unclear. Here we used liposomes and toxic and nontoxic oligomers formed by the same protein to measure quantitatively the affinity of the two oligomeric species for lipid membranes. To this aim, we quantified the perturbation to the lipid membranes caused by the two oligomers by using the fluorescence quenching of two probes embedded in the polar and apolar regions of the lipid membranes and a well-defined protein-oligomer binding assay using fluorescently labeled oligomers to determine the Stern-Volmer and dissociation constants, respectively. With both approaches, we found that the toxic oligomers have a membrane affinity 20-25 times higher than that of nontoxic oligomers. Circular dichroism, intrinsic fluorescence, and FRET indicated that neither oligomer type changes its structure upon membrane interaction. Using liposomes enriched with trodusquemine, a potential small molecule drug known to penetrate lipid membranes and make them refractory to toxic oligomers, we found that the membrane affinity of the oligomers was remarkably lower. At protective concentrations of the small molecule, the binding of the oligomers to the lipid membranes was fully prevented. Furthermore, the affinity of the toxic oligomers for the lipid membranes was found to increase and slightly decrease with GM1 ganglioside and cholesterol content, respectively, indicating that physicochemical properties of lipid membranes modulate their affinity for misfolded oligomeric species.
  •  
7.
  • Kerdegari, Sajedeh, et al. (författare)
  • Insights in Cell Biomechanics through Atomic Force Microscopy
  • 2023
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 16:8
  • Forskningsöversikt (refereegranskat)abstract
    • We review the advances obtained by using Atomic Force Microscopy (AFM)-based approaches in the field of cell/tissue mechanics and adhesion, comparing the solutions proposed and critically discussing them. AFM offers a wide range of detectable forces with a high force sensitivity, thus allowing a broad class of biological issues to be addressed. Furthermore, it allows for the accurate control of the probe position during the experiments, providing spatially resolved mechanical maps of the biological samples with subcellular resolution. Nowadays, mechanobiology is recognized as a subject of great relevance in biotechnological and biomedical fields. Focusing on the past decade, we discuss the intriguing issues of cellular mechanosensing, i.e., how cells sense and adapt to their mechanical environment. Next, we examine the relationship between cell mechanical properties and pathological states, focusing on cancer and neurodegenerative diseases. We show how AFM has contributed to the characterization of pathological mechanisms and discuss its role in the development of a new class of diagnostic tools that consider cell mechanics as new tumor biomarkers. Finally, we describe the unique ability of AFM to study cell adhesion, working quantitatively and at the single-cell level. Again, we relate cell adhesion experiments to the study of mechanisms directly or secondarily involved in pathologies.
  •  
8.
  • Najafi, Leyla, et al. (författare)
  • Hybrid Organic/Inorganic Photocathodes Based on WS2 Flakes as Hole Transporting Layer Material
  • 2021
  • Ingår i: Small Structures. - : John Wiley & Sons. - 2688-4062. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficient production of molecular hydrogen (H2) is a fundamental step toward an environmentally friendly economy. Photocathodes using organic bulk heterojunction (BHJ) films as light harvesters represent an attracting technology for low-cost photoelectrochemical water splitting. These photocathodes need charge transporting layers (CTLs) to efficiently separate and transport either holes or electrons toward the back-current collector and electrolyte, respectively. Therefore, it is pivotal to control the energy band edge levels and the work function (WF) of the CTLs to match the ones of the BHJ film, current collector, and electrolyte. Herein, the use of 2D p-doped WS2 flakes as hole transporting material for H2-evolving photocathodes based on the regioregular poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (rr-P3HT:PCBM) BHJ film is proposed. The WS2 flakes are produced through scalable liquid-phase exfoliation of the bulk crystal, whereas p-type chemical doping allows the tuning of the WS2 WF. This approach boosts the performances of the photocathodes, reaching photocurrent densities up to 4.14 mA cm−2 at 0 V versus reversible hydrogen electrode (RHE), an onset potential of 0.66 V versus RHE, and a ratiometric power-saved metric of 1.28% (under 1 sun illumination). To the best of the authors' knowledge, these performances represent the current record for 2D materials-based CTLs.
  •  
9.
  • Najafi, Leyla, et al. (författare)
  • Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction
  • 2020
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 16:50
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanoengineering of the structure of transition metal dichalcogenides (TMDs) is widely pursued to develop viable catalysts for the hydrogen evolution reaction (HER) alternative to the precious metallic ones. Metallic group-5 TMDs have been demonstrated to be effective catalysts for the HER in acidic media, making affordable real proton exchange membrane water electrolysers. Their key-plus relies on the fact that both their basal planes and edges are catalytically active for the HER. In this work, the 6R phase of TaS2 is "rediscovered" and engineered. A liquid-phase microwave treatment is used to modify the structural properties of the 6R-TaS2 nanoflakes produced by liquid-phase exfoliation. The fragmentation of the nanoflakes and their evolution from monocrystalline to partly polycrystalline structures improve the HER-activity, lowering the overpotential at cathodic current of 10 mA cm(-2) from 0.377 to 0.119 V. Furthermore, 6R-TaS2 nanoflakes act as ideal support to firmly trap Pt species, which achieve a mass activity (MA) up 10 000 A g(Pt)(-1) at overpotential of 50 mV (20 000 A g(Pt)(-1) at overpotentials of 72 mV), representing a 20-fold increase of the MA of Pt measured for the Pt/C reference, and approaching the state-of-the-art of the Pt mass activity.
  •  
10.
  • Najafi, Leyla, et al. (författare)
  • Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2 for Water Splitting Reactions in Acidic and Alkaline Media
  • 2022
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:1, s. 351-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The asproduced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O-2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The assynthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g(-1) at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm(-2) = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g(-1) at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm(-2) = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
  •  
11.
  • Najafi, Leyla, et al. (författare)
  • Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction : The emblematic case of "inert" ZrSe2 as catalyst for electrolyzers
  • 2022
  • Ingår i: Nano Select. - : Wiley-VCH Verlagsgesellschaft. - 2688-4011. ; 3:6, s. 1069-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of earth-abundant electrocatalysts (ECs) operating at high current densities in water splitting electrolyzers is pivotal for the widespread use of the current green hydrogen production plants. Transition metal dichalcogenides (TMDs) have emerged as promising alternatives to the most efficient noble metal ECs, leading to a wealth of research. Some strategies based on material nanostructuring and hybridization, introduction of defects and chemical/physical modifications appeared as universal approaches to provide catalytic properties to TMDs, regardless of the specific material. In this work, we show that even a theoretically poorly catalytic (and poorly studied) TMD, namely zirconium diselenide (ZrSe2), can act as an efficient EC for the hydrogen evolution reaction (HER) when exfoliated in the form of two-dimensional (2D) few-layer flakes. We critically show the difficulties of explaining the catalytic mechanisms of the resulting ECs in the presence of complex structural and chemical modifications, which are nevertheless evaluated extensively. By doing so, we also highlight the easiness of transforming 2D TMDs into effective HER-ECs. To strengthen our message in practical environments, we report ZrSe2-based acidic (proton exchange membrane [PEM]) and alkaline water electrolyzers operating at 400 mA cm–2 at a voltage of 1.88 and 1.92 V, respectively, thus competing with commercial technologies.
  •  
12.
  • Oropesa Nuñez, Reinier, et al. (författare)
  • Impact of Experimental Parameters on Cell-Cell Force Spectroscopy Signature
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic force microscopy is an extremely versatile technique, featuring atomic-scale imaging resolution, and also offering the possibility to probe interaction forces down to few pN. Recently, this technique has been specialized to study the interaction between single living cells, one on the substrate, and a second being adhered on the cantilever. Cell-cell force spectroscopy offers a unique tool to investigate in fine detail intra-cellular interactions, and it holds great promise to elucidate elusive phenomena in physiology and pathology. Here we present a systematic study of the effect of the main measurement parameters on cell-cell curves, showing the importance of controlling the experimental conditions. Moreover, a simple theoretical interpretation is proposed, based on the number of contacts formed between the two interacting cells. The results show that single cell-cell force spectroscopy experiments carry a wealth of information that can be exploited to understand the inner dynamics of the interaction of living cells at the molecular level.
  •  
13.
  • Oropesa Nunez, Reinier, et al. (författare)
  • Insights into the Formation of DNA−Magnetic Nanoparticle Hybrid Structures : Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurement
  • 2020
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 5:11, s. 3510-3519
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the binding mechanism between probe-functionalized magnetic nanoparticles (MNPs) and DNA targets or amplification products thereof is essential in the optimization of magnetic biosensors for the detection of DNA. Herein, the molecular interaction forming hybrid structures upon hybridization between DNA-functionalized magnetic nanoparticles, exhibiting Brownian relaxation, and rolling circle amplification products (DNA-coils) is investigated by the use of atomic force microscopy in a liquid environment and magnetic biosensors measuring the frequency-dependent magnetic response and the frequency-dependent modulation of light transmission. This approach reveals the qualitative and quantitative correlations between the morphological features of the hybrid structures with their magnetic response. The suppression of the high-frequency peak in the magnetic response and the appearance of a new peak at lower frequencies match the formation of larger sized assemblies upon increasing the concentration of DNA-coils. Furthermore, an increase of the DNA-coil concentration induces an increase in the number of MNPs per hybrid structure. This study provides new insights into the DNA-MNP binding mechanism, and its versatility is of considerable importance for the mechanistic characterization of other DNA-nanoparticle biosensor systems.
  •  
14.
  • Sánchez Martín, Darío, et al. (författare)
  • Evaluating the performance of a magnetic nanoparticle-based detection method using circle-to-circle amplification
  • 2021
  • Ingår i: Biosensors. - : MDPI. - 2079-6374. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • This work explores several issues of importance for the development of a diagnostic method based on circle-to-circle amplification (C2CA) and oligonucleotide-functionalized magnetic nanoparticles. Firstly, the performance of the detection method was evaluated in terms of sensitivity and speed. Synthetic target sequences for Newcastle disease virus and Salmonella were used as model sequences. The sensitivity of the C2CA assay resulted in detection of 1 amol of starting DNA target with a total amplification time of 40 min for both target sequences. Secondly, the functionalization of the nanoparticles was evaluated in terms of robustness and stability. The functionalization was shown to be very robust, and the stability test showed that 92% of the oligos were still attached on the particle surface after three months of storage at 4 degrees C. Altogether, the results obtained in this study provide a strong foundation for the development of a quick and sensitive diagnostic assay.
  •  
15.
  • Sánchez Martín, Darío, et al. (författare)
  • Formation of Visible Aggregates between Rolling Circle Amplification Products and Magnetic Nanoparticles as a Strategy for Point-of-Care Diagnostics
  • 2021
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 6:48, s. 32970-32976
  • Tidskriftsartikel (refereegranskat)abstract
    • Visual detection of rolling circle amplification products (RCPs) has been achieved by specific aggregation with magnetic nanoparticles. The method presented here reliably generates aggregates in 1.5 h; these are visible to the naked eye in samples containing at least 0.4 fmol of RCPs. In addition, alternate current susceptometry and absorbance spectroscopy have also been used to quantify the amplified products. The specificity of the detection method was tested, and no non-specific aggregation was detected in samples containing up to 20 fmol of non-complementary amplified DNA. This method is a versatile tool for detecting pathogenic DNA in point-of-care diagnostics, with no readout equipment required. However, chips and automated assays can be used in conjugation with the developed method since detection and quantification can be achieved by commercially available readout instruments.
  •  
16.
  • Sánchez Martín, Darío, et al. (författare)
  • Rolling Circle Amplification on a Bead : Improving the Detection Time for a Magnetic Bioassay
  • 2023
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8:4, s. 4391-4397
  • Tidskriftsartikel (refereegranskat)abstract
    • Detection of pathogens has become increasingly important, especially in the face of outbreaks and epidemics all over the world. Nucleic acid detection techniques provide a solid base to detect and identify pathogens. In recent years, magnetic sensors and magnetic labels have become of more interest due to their simplicity of use, low cost, and versatility. In this work, we have used the isothermal DNA amplification technique of rolling circle amplification (RCA) in combination with oligo-functionalized magnetic nanoparticles. Detection of RCA products takes place through specific binding between magnetic nanoparticles and RCA products. Upon binding, the relaxation frequency of the nanoparticle changes. This change was measured using an AC susceptometer. We showcase that the RCA time can be reduced for a quicker assay when performing the RCA on the surface of micrometer-sized beads, which consequently increases the hydrodynamic volume of the RCA products. This, in turn, increases the Brownian relaxation frequency shift of the nanoparticles upon binding. We performed optimization work to determine the ideal quantity of micrometer-sized particles, oligo-functionalized nanoparticles, and the amplification time of the RCA. We show that the detection of 0.75 fmol of preamplification synthetic target is possible with only 20 min of amplification time. Finally, we showcase the high specificity of the assay, as the functionalized nanoparticles are unable to bind to amplified DNA that does not match their labels. Overall, this paves the way for a simple bioassay that can be used without expensive laboratory equipment for detection of pathogens in outbreak settings and clinics around the world.
  •  
17.
  • Tsikritzis, Dimitris, et al. (författare)
  • A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells
  • 2020
  • Ingår i: Materials Advances. - : Royal Society of Chemistry (RSC). - 2633-5409. ; 1:3, s. 450-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSCs) are currently the leading thin-film photovoltaic technology owing to their high power conversion efficiency (PCE), as well as their low-cost and facile manufacturing process. Two-dimensional (2D) materials have been reported to improve both the PCE and the stability of PSCs when incorporated across the device's layered configuration. Hereby, a two-fold engineering approach is implemented in inverted PSCs by using ultra-thin Bi2Te3 flakes, i.e.: (1) to dope the electron transport layer (ETL) and (2) to form a protective interlayer above the ETL. Thorough steady-state and time-resolved transport analyses reveal that our first engineering approach improves the electron extraction rate and thus the overall PCE (+6.6% vs. reference cells), as a result of the favourable energy level alignment between the perovskite, the ETL and the cathode. Moreover, the Bi2Te3 interlayer, through the second engineering approach, facilitates further the electron transport and in addition protects the underlying structure against chemical instability effects, leading to enhanced device performance and stability. By combining the two engineering approaches, our optimised PSCs reach a PCE up to 19.46% (+15.2% vs. reference cells) and retain more than 80% of their initial PCE, after the burn-in phase, over 1100 h under continous 1 sun illumination. These performances are among the highest reported in the literature for inverted PSCs.
  •  
18.
  • Villamayor, Michelle Marie S., et al. (författare)
  • Wafer-sized WS2 monolayer deposition by sputtering
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:17, s. 6331-6338
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that tungsten disulphide (WS2) with thicknesses ranging from monolayer (ML) to several monolayers can be grown on SiO2/Si, Si, and Al2O3 by pulsed direct current-sputtering. The presence of high quality monolayer and multilayered WS2 on the substrates is confirmed by Raman spectroscopy since the peak separations between the A(1g)-E-2g and A(1g)-2LA vibration modes exhibit a gradual increase depending on the number of layers. X-ray diffraction confirms a textured (001) growth of WS2 films. The surface roughness measured with atomic force microscopy is between 1.5 and 3 angstrom for the ML films. The chemical composition WSx (x = 2.03 +/- 0.05) was determined from X-ray Photoelectron Spectroscopy. Transmission electron microscopy was performed on a multilayer film to show the 2D layered structure. A unique method for growing 2D layers directly by sputtering opens up the way for designing 2D materials and batch production of high-uniformity and high-quality (stochiometric, large grain sizes, flatness) WS2 films, which will advance their practical applications in various fields.
  •  
19.
  • Zappia, Marilena, I, et al. (författare)
  • Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:22, s. 11857-11866
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) transition-metal monochalcogenides have been recently predicted to be potential photo(electro)catalysts for water splitting and photoelectrochemical (PEC) reactions. Differently from the most established InSe, GaSe, GeSe, and many other monochalcogenides, bulk GaS has a large band gap of similar to 2.5 eV, which increases up to more than 3.0 eV with decreasing its thickness due to quantum confinement effects. Therefore, 2D GaS fills the void between 2D small-band-gap semiconductors and insulators, resulting of interest for the realization of van der Waals type-I heterojunctions in photocatalysis, as well as the development of UV light-emitting diodes, quantum wells, and other optoelectronic devices. Based on theoretical calculations of the electronic structure of GaS as a function of layer number reported in the literature, we experimentally demonstrate, for the first time, the PEC properties of liquid-phase exfoliated GaS nanoflakes. Our results indicate that solution-processed 2D GaS-based PEC-type photodetectors outperform the corresponding solid-state photodetectors. In fact, the 2D morphology of the GaS flakes intrinsically minimizes the distance between the photogenerated charges and the surface area at which the redox reactions occur, limiting electron-hole recombination losses. The latter are instead deleterious for standard solidstate configurations. Consequently, PEC-type 2D GaS photodetectors display a relevant UV-selective photoresponse. In particular, they attain responsivities of 1.8 mA W-1 in 1 M H2SO4 [at 0.8 V vs reversible hydrogen electrode (RHE)], 4.6 mA W-1 in 1 M Na2SO4 (at 0.9 V vs RHE), and 6.8 mA W--(1) in 1 M KOH (at 1.1. V vs RHE) under 275 nm illumination wavelength with an intensity of 1.3 mW cm(-2). Beyond the photodetector application, 2D GaS-based PEC-type devices may find application in tandem solar PEC cells in combination with other visible-sensitive low-band-gap materials, including transition-metal monochalcogenides recently established for PEC solar energy conversion applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy