SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orsi Gergely) "

Sökning: WFRF:(Orsi Gergely)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Perlaki, Gabor, et al. (författare)
  • Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Neuroimaging data suggest that pediatric overweight and obesity are associated with morphological alterations in gray matter (GM) brain structures, but previous studies using mainly voxel-based morphometry (VBM) showed inconsistent results. Here, we aimed to examine the relationship between youth obesity and the volume of predefined reward system structures using magnetic resonance (MR) volumetry. We also aimed to complement volumetry with VBM-style analysis. Methods Fifty-one Caucasian young subjects (32 females; mean age: 13.8±1.9, range: 10.2–16.5 years) were included. Subjects were selected from a subsample of the I.Family study examined in the Hungarian center. A T1-weighted 1 mm3 isotropic resolution image was acquired. Age- and sex-standardized body mass index (zBMI) was assessed at the day of MRI and ~1.89 years (mean±SD: 689±188 days) before the examination. Obesity related GM alterations were investigated using MR volumetry in five predefined brain structures presumed to play crucial roles in body weight regulation (hippocampus, amygdala, accumbens, caudate, putamen), as well as whole-brain and regional VBM. Results The volumes of accumbens and amygdala showed significant positive correlations with zBMI, while their GM densities were inversely related to zBMI. Voxel-based GM mass also showed significant negative correlation with zBMI when investigated in the predefined amygdala region, but this relationship was mediated by GM density. Conclusions Overweight/obesity related morphometric brain differences already seem to be present in children/adolescents. Our work highlights the disparity between volume and VBM-derived measures and that GM mass (combination of volume and density) is not informative in the context of obesity related volumetric changes. To better characterize the association between childhood obesity and GM morphometry, a combination of volumetric segmentation and VBM methods, as well as future longitudinal studies are necessary. Our results suggest that childhood obesity is associated with enlarged structural volumes, but decreased GM density in the reward system. © 2018 Perlaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
2.
  • Toth, Arnold, et al. (författare)
  • Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury : can we see the difference?
  • 2013
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 30:1, s. 2-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI. 
  •  
3.
  • Toth, Luca, et al. (författare)
  • Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults
  • 2022
  • Ingår i: GeroScience. - : Springer. - 2509-2715 .- 2509-2723. ; 44:6, s. 2771-2783
  • Tidskriftsartikel (refereegranskat)abstract
    • Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults. 
  •  
4.
  • van Meer, Floor, et al. (författare)
  • Development and body mass inversely affect children's brain activation in dorsolateral prefrontal cortex during food choice
  • 2019
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 201, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Childhood obesity is a rising problem caused in part by unhealthy food choices. Food choices are based on a neural value signal encoded in the ventromedial prefrontal cortex, and self-control involves modulation of this signal by the dorsolateral prefrontal cortex (dlPFC). We determined the effects of development, body mass (BMI Cole score) and body mass history on the neural correlates of healthy food choice in children. 141 children (aged 10-17y) from Germany, Hungary and Sweden were scanned with fMRI while performing a food choice task. Afterwards health and taste ratings of the foods were collected. In the food choice task children were asked to consider the healthiness or tastiness of the food or to choose naturally. Overall, children made healthier choices when asked to consider healthiness. However, children who had a higher weight gain per year chose less healthy foods when considering healthiness but not when choosing naturally. Pubertal development stage correlated positively while current body mass correlated negatively with dlPFC activation when accepting foods. Pubertal development negatively and current body mass positively influenced the effect of considering healthiness on activation of brain areas involved in salience and motivation. In conclusion, children in earlier stages of pubertal development and children with a higher body weight exhibited less activation in the dlPFC, which has been implicated in self-control during food choice. Furthermore, pubertal development and body mass influenced neural responses to a health cue in areas involved in salience and motivation. Thus, these findings suggest that children in earlier stages of pubertal development, children with a higher body mass gain and children with overweight may possibly be less susceptible to healthy eating interventions that rely on self-control or that highlight health aspects of food. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy