SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ortega Paino Eva) "

Sökning: WFRF:(Ortega Paino Eva)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cruz, Raquel, et al. (författare)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
2.
  • Ek, Sara, et al. (författare)
  • Transcriptional profiling and assessment of cell lines as in vitro models for mantle cell lymphoma
  • 2005
  • Ingår i: Leukemia Research: A Forum for Studies on Leukemia and Normal Hemopoiesis. - : Elsevier BV. - 1873-5835. ; 29:2, s. 205-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) is an aggressive malignancy and new treatment modalities must be established to increase patient survival time. In the search for new therapeutic targets, reliable and well-characterised in vitro models are essential. In this study, we have characterised three MCL cell lines (SP53, Granta 519 and NCEB1) in comparison with primary tumors front MCL, follicular lymphomas (FL), a(.)FL cell line(RL), a Burkitt lymphoma cell line (RAJI) and five different B cell populations from healthy individuals. Expression profiling was used to determine the relative expression of >12000 transcripts in these samples, and flow cytometry analysis was performed to establish a phenotypic signature for each of the cell lines. In addition, the cell lines were sequenced, and the frequency of somatic Mutations and immunoglobulin (Ig) variable heavy chain (V-H) Usage were determined. We show by hierarchical clustering that the cell lines retain a genetic signature similar to primary MCL, which readily separated the MCL samples front the other lymphoma cell lines and the FL tumours. Furthermore, the MCL cell lines showed differences in the frequency of V-H somatic mutations (0-2.1%). The increased number of mutations in NCEB1, compared to the other MCL cell lines, was in agreement with a decreased expression of CD31, CD44, CXCR5, CCR7 and CCR6. Taken together, our data show that the cell lines are clearly derived from MCL tumours and expressed similar genetic and phenotypic signatures compared to primary tumours, which confirmed their usefulness as in vitro models. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
3.
  • Galli, Joakim, et al. (författare)
  • The Biobanking Analysis Resource Catalogue (BARCdb): a new research tool for the analysis of biobank samples.
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 43:D1, s. 1158-1162
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the development of a new database of technology services and products for analysis of biobank samples in biomedical research. BARCdb, the Biobanking Analysis Resource Catalogue (http://www.barcdb.org), is a freely available web resource, listing expertise and molecular resource capabilities of research centres and biotechnology companies. The database is designed for researchers who require information on how to make best use of valuable biospecimens from biobanks and other sample collections, focusing on the choice of analytical techniques and the demands they make on the type of samples, pre-analytical sample preparation and amounts needed. BARCdb has been developed as part of the Swedish biobanking infrastructure (BBMRI.se), but now welcomes submissions from service providers throughout Europe. BARCdb can help match resource providers with potential users, stimulating transnational collaborations and ensuring compatibility of results from different labs. It can promote a more optimal use of European resources in general, both with respect to standard and more experimental technologies, as well as for valuable biobank samples. This article describes how information on service and reagent providers of relevant technologies is made available on BARCdb, and how this resource may contribute to strengthening biomedical research in academia and in the biotechnology and pharmaceutical industries.
  •  
4.
  • Ortega-Paino, Eva, et al. (författare)
  • Functionally associated targets in mantle cell lymphoma as defined by DNA microarrays and RNA interference
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 111:3, s. 1617-1624
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with poor prognosis. Its hallmark is the translocation t(11:14)q (13;32), leading to overexpression of cyclin D1, a positive regulator of the cell cycle. As cyclin D1 up-regulation is not sufficient for inducing malignant transformation, we combined DNA microarray and RNA interference (RNAi) approaches to identify novel deregulated genes involved in the progression of MCL. DNA microarray analysis identified 46 genes specifically up-regulated in MCL compared with normal B cells; 20 of these were chosen for further studies based on their cellular functions, such as growth and proliferation. The Granta 519 cell line was selected as an MCL in vitro model, to set up the RNAi protocol. To confirm the functionality of overexpression of the 20 disease-associated genes, they were knocked down using small interfering RNAs (siRNAs). In particular, knockdown of 3 genes, encoding the hepatoma-derived growth factor related protein 3 (HDGFRP3), the frizzled homolog 2 (FZD2), and the dual specificity phosphatase 5 (DUSP5), induced proliferative arrest in Granta 519 MCL cells. These genes emerged as functionally associated in MCL, in relation to growth and survival, and interfering with their function would increase insight into lymphoma growth regulation, potentially leading to novel clinical intervention modalities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy