SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oscarsson Johan 1984 ) "

Sökning: WFRF:(Oscarsson Johan 1984 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Calnan, Sonya, et al. (författare)
  • Development of Various Photovoltaic‐Driven Water Electrolysis Technologies for Green Solar Hydrogen Generation
  • 2021
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct solar hydrogen generation via a combination of photovoltaics (PV) and water electrolysis can potentially ensure a sustainable energy supply while minimizing greenhouse emissions. The PECSYS project aims at demonstrating asolar-driven electrochemical hydrogen generation system with an area >10 m2 with high efficiency and at reasonable cost. Thermally integrated PV electrolyzers(ECs) using thin-film silicon, undoped, and silver-doped Cu(In,Ga)Se2 and silicon heterojunction PV combined with alkaline electrolysis to form one unit are developed on a prototype level with solar collection areas in the range from 64 to2600 cm2 with the solar-to-hydrogen (StH) efficiency ranging from 4 to 13%. Electrical direct coupling of PV modules to a proton exchange membrane EC test the effects of bifacially (730 cm2 solar collection area) and to study the long-term operation under outdoor conditions (10 m2 collection area) is also investigated. In both cases, StH efficiencies exceeding 10% can be maintained over the test periods used. All the StH efficiencies reported are based on measured gas outflow using mass flow meters.
  •  
3.
  • Lee, Wei Chuang, et al. (författare)
  • Monolayer calibration of endofullerenes with x-ray absorption from implanted keV ion doses
  • 2024
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray absorption spectroscopy (XAS) has the highest sensitivity for chemical element detection on surfaces. With this approach, small amounts of lanthanide-containing endofullerene molecules (Ho3N@C80) have been measured by total electron yield at a low flux bending magnet beamline. The monolayer coverage is calibrated by extrapolating the signals of constant doses (3 x 1014 cm-2) of Ho ions implanted into SiO2 with energies between 2 and 115 keV. At room temperature, the Ho XAS spectra of the molecules and implanted ions indicate trivalent but not identical Ho ground states. Still, this approach demonstrates a way for calibration of small coverages of molecules containing open core-shell elements.
  •  
4.
  • Oscarsson, Johan, 1984-, et al. (författare)
  • Molecular degradation of D35 and K77 sensitizers when exposed to temperatures exceeding 100 °C investigated by photoelectron spectroscopy
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 18:12, s. 8598-8607
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradation of the materials in dye-sensitized solar cells at elevated temperatures is critical for use in real applications. Both during fabrication of the solar cell and under real working conditions the solar cells will be exposed to heat. In this work, mesoporous TiO2 electrodes sensitized with the dyes D35 and K77 were subject to heat-treatment and the effects of this were thereafter investigated by photoelectron spectroscopy. For D35 it was found that heat-treatment changes the binding configuration inducing an increased interaction between the sulfur of the linker unit and the TiO2 surface. The interaction resulting from the change in binding configuration also affects the position of the HOMO level, where a shift of + 0.2 eV is observed when heated to 200 degrees C. For K77, parts of the thiocyanate units are detached and the nitrogen atom leaves the electrode whereas sulfur remains on the surface in various forms of sulfurous oxides. The total dye coverage of K77 gets reduced by heat-treatment. The HOMO level gets progressively less pronounced due to a loss of HOMO level electrons as a consequence of the lower dye coverage when heat-treated, which leads to a lower excitation rate and lower efficiency. The results are discussed in the context of performance for dye-sensitized solar cells.
  •  
5.
  • Oscarsson, Johan, 1984- (författare)
  • Towards Mixed Molecular Layers for Dye-Sensitized Solar Cells : A Photoelectron Spectroscopy Study
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing demand for renewable energy has led to substantial research on different solar cell technologies. The dye-sensitized solar cell (DSC) is a technology utilizing dye molecules for light absorption. Dye molecules are adsorbed to a mesoporous semiconductor surface and after light absorption in the dye, charge separation occurs at this interface. Traditionally, DSCs have used layers of single dye species, but in recent efforts to enhance power conversion efficiency, more complex molecular layers have been designed to increase the light absorption. For example, the most efficient DSCs use a combination of two dye molecules, and such dye co-adsorption is studied in this thesis.A key to highly efficient DSCs is to understand the dye/semiconductor interface from a molecular perspective. One way of gaining this understanding is by using an element specific, surface sensitive technique, such as photoelectron spectroscopy (PES).In this thesis, PES is used to understand new complex dye/semiconductor interfaces. Dyes adsorbed to semiconductor surfaces are analyzed using PES in terms of geometric and electronic surface structure.  The investigations ultimately target the effects of co-adsorbing dyes with other dyes or co-adsorbents.PES shows that Ru dyes can adsorb in mixed configurations to TiO2. Co-adsorption with an organic dye affects the configuration of the Ru dyes. As a consequence, shifts in energy level alignment and increased dye coverage are observed. The dyes are affected at a molecular level in ways beneficial for solar cell performance. This is called collaborative sensitization and is also observed in todays most efficient DSC.Dye molecules are generally sensitive to high temperatures and the substantial decrease in power conversion efficiency after heat-treatment can be understood using PES. Furthermore, comparing two mesoscopic TiO2 morphologies used in DSCs show differences in trap state density in the band gap, explaining the photovoltage difference in DSCs comprising these morphologies. Using mixed molecular layers on NiO results in significant improvements of p-type DSC power conversion efficiency. PES shows that changed adsorption configuration contribute to this effect.This thesis shows that PES studies can be used to obtain insight into functional properties of complex DSC interfaces at a molecular level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy