SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oskarsson Marie E.) "

Sökning: WFRF:(Oskarsson Marie E.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krotee, Pascal, et al. (författare)
  • Atomic structures of fibrillar segments of hIAPP suggest tightly mated beta-sheets are important or cytotoxicity
  • 2017
  • Ingår i: eLIFE. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic beta-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19-29 S20G, forms pairs of beta-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15-25 WT, forms non-toxic labile beta-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19-29 S20G may serve as a model for the toxic spine of hIAPP.
  •  
2.
  •  
3.
  • Krizhanovskii, Camilla, et al. (författare)
  • Addition of exogenous sodium palmitate increases the IAPP/insulin mRNA ratio via GPR40 in human EndoC-beta H1 cells
  • 2017
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 122:3, s. 149-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Enhanced IAPP production may contribute to islet amyloid formation in type 2 diabetes. The objective of this study was to determine the effects of the saturated fatty acid palmitate on IAPP levels in human beta-cells. Methods: EndoC-beta H1 cells and human islets were cultured in the presence of sodium palmitate. Effects on IAPP/insulin mRNA expression and secretion were determined using real-time qPCR/ELISA. Pharmacological activators and/or inhibitors and RNAi were used to determine the underlying mechanisms. Results: We observed that EndoC-beta H1 cells exposed to palmitate for 72 h displayed decreased expression of Pdx-1 and MafA and increased expression of thioredoxin-interacting protein (TXNIP), reduced insulin mRNA expression and glucose-induced insulin secretion, as well as increased IAPP mRNA expression and secretion. Further, these effects were independent of fatty acid oxidation, but abolished in response to GPR40 inhibition/downregulation. In human islets both a high glucose concentration and palmitate promoted increased IAPP mRNA levels, resulting in an augmented IAPP/insulin mRNA ratio. This was paralleled by elevated IAPP/insulin protein secretion and content ratios. Conclusions: Addition of exogenous palmitate to human beta-cells increased the IAPP/insulin expression ratio, an effect contributed to by activation of GPR40. These findings may be pertinent to our understanding of the islet amyloid formation process.
  •  
4.
  • Oskarsson, Marie E., et al. (författare)
  • Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:24, s. 15121-15132
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of beta cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mM glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that beta cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of beta cells.
  •  
5.
  • Oskarsson, Marie E., et al. (författare)
  • In Vivo Seeding and Cross-Seeding of Localized Amyloidosis A Molecular Link between Type 2 Diabetes and Alzheimer Disease
  • 2015
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 185:3, s. 834-846
  • Tidskriftsartikel (refereegranskat)abstract
    • Several proteins have been identified as amyloid forming in humans, and independent of protein origin, the fibrils are morphologically similar. Therefore, there is a potential for structures with amyloid seeding ability to induce both homologous and heterologous fibril growth; thus, molecular interaction can constitute a Link between different amyloid forms. Intravenous injection with preformed fibrils from islet amyloid polypeptide (IAPP), proIAPP, or amyloid-beta (A beta) into human IAPP transgenic mice triggered IAPP amyloid formation in pancreas in 5 of 7 mice in each group, demonstrating that IAPP amyloid could be enhanced through homologous and heterologous seeding with higher efficiency for the former mechanism. Proximity Ligation assay was used for colocalization studies of IAPP and A beta in islet amyloid in type 2 diabetic patients and A beta deposits in brains of patients with Alzheimer disease. All reactivity was not detected in islet amyloid although islet beta cells express A beta PP and convertases necessary for A beta production. By contrast, IAPP and proIAPP were detected in cerebral and vascular A beta deposits, and presence of proximity Ligation signal at both locations showed that the peptides were <40 nm apart. It is not clear whether IAPP present in brain originates from pancreas or is Locally produced. Heterologous seeding between IAPP and All shown here may represent a molecular Link between type 2 diabetes and Alzheimer disease.
  •  
6.
  •  
7.
  • Oskarsson, Marie E., et al. (författare)
  • The BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:12, s. E2752-E2761
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been shown to prevent fibril formation and toxicity of Aβ42, an amyloid-forming peptide in Alzheimer disease. In this study, we demonstrate expression of Bri2 in human islets and in the human beta-cell line EndoC-βH1. Bri2 colocalizes with IAPP intracellularly and is present in amyloid deposits in patients with type 2 diabetes. The BRICHOS domain of Bri2 effectively inhibits fibril formation in vitro and instead redirects IAPP into formation of amorphous aggregates. Reduction of endogenous Bri2 in EndoC-βH1 cells with siRNA increases sensitivity to metabolic stress leading to cell death while a concomitant overexpression of Bri2 BRICHOS is protective. Also, coexpression of IAPP and Bri2 BRICHOS in lateral ventral neurons of Drosophila melanogaster results in an increased cell survival. IAPP is considered to be the most amyloidogenic peptide known, and described findings identify Bri2, or in particular its BRICHOS domain, as an important potential endogenous inhibitor of IAPP aggregation and toxicity, with the potential to be a possible target for the treatment of type 2 diabetes.
  •  
8.
  • Rising, Anna, et al. (författare)
  • AA amyloid in human food chain is a possible biohazard
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AA amyloidosis can be transmitted experimentally in several mammalian and avian species as well as spontaneously between captive animals, even by oral intake of amyloid seeds. Amyloid seeding can cross species boundaries, and fibrils of one kind of amyloid protein may also seed other types. Here we show that meat from Swedish and Italian cattle for consumption by humans often contains AA amyloid and that bovine AA fibrils efficiently cross-seed human amyloid beta peptide, associated with Alzheimer's disease.
  •  
9.
  • Ullsten, Sara, et al. (författare)
  • Islet amyloid deposits preferentially in the highly functional and most blood-perfused islets.
  • 2017
  • Ingår i: Endocrine Connections. - : BIOSCIENTIFICA LTD. - 2049-3614. ; 6:7, s. 458-468
  • Tidskriftsartikel (refereegranskat)abstract
    • Islet amyloid and beta cell death in type 2 diabetes are heterogeneous events, where some islets are affected early in the disease process, whereas others remain visibly unaffected. This study investigated the possibility that inter-islet functional and vascular differences may explain the propensity for amyloid accumulation in certain islets. Highly blood-perfused islets were identified by microspheres in human islet amyloid polypeptide expressing mice fed a high-fat diet for three or 10 months. These highly blood-perfused islets had better glucose-stimulated insulin secretion capacity than other islets and developed more amyloid deposits after 10 months of high-fat diet. Similarly, human islets with a superior release capacity formed more amyloid in high glucose culture than islets with a lower release capacity. The amyloid formation in mouse islets was associated with a higher amount of prohormone convertase 1/3 and with a decreased expression of its inhibitor proSAAS when compared to islets with less amyloid. In contrast, levels of prohormone convertase 2 and expression of its inhibitor neuroendocrine protein 7B2 were unaltered. A misbalance in prohormone convertase levels may interrupt the normal processing of islet amyloid polypeptide and induce amyloid formation. Preferential amyloid load in the most blood-perfused and functional islets may accelerate the progression of type 2 diabetes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy