SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Osnes Liv) "

Sökning: WFRF:(Osnes Liv)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björklund, Elisabet, et al. (författare)
  • Quality control of flow cytometry data analysis for evaluation of minimal residual disease in bone marrow from acute leukemia patients during treatment.
  • 2009
  • Ingår i: Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology. - : Lippincott Williams & Wilkins. - 1536-3678 .- 1077-4114. ; 31:6, s. 406-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Low levels of leukemia cells in the bone marrow, minimal residual disease (MRD), are considered to be a powerful indicator of treatment response in acute lymphatic leukemia (ALL). A Nordic quality assurance program, aimed on standardization of the flow cytometry MRD analysis, has been established before implementation of MRD at cutoff level 10 as one of stratifying parameters in next Nordic Society of Pediatric Hematology and Oncology (NOPHO) treatment program for ALL. In 4 quality control (QC) rounds 15 laboratories determined the MRD levels in 48 follow-up samples from 12 ALL patients treated according to NOPHO 2000. Analysis procedures were standardized. For each QC round a compact disc containing data in list-mode files was sent out and results were submitted to a central laboratory. At cutoff level 10, which will be applied for clinical decisions, laboratories obtained a high concordance (91.6%). If cutoff level 10 was applied, the concordance would be lower (85.3%). The continuing standardization resulted in better concordance in QC3 and QC4 compared with QC1 and QC2. The concordance was higher in precursor B as compared with T-cell ALL. We conclude that after standardization, flow cytometry MRD detection can be reliably applied in international, multicenter treatment protocols.
  •  
2.
  • Stray-Pedersen, Asbjorg, et al. (författare)
  • Primary immunodeficiency diseases : Genomic approaches delineate heterogeneous Mendelian disorders
  • 2017
  • Ingår i: Journal of Allergy and Clinical Immunology. - : MOSBY-ELSEVIER. - 0091-6749 .- 1097-6825. ; 139:1, s. 232-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective: We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. Methods: Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. Results: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/ 110) and management was directly altered in nearly a quarter (26/ 110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion: This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy