SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ovadnevaite Jurgita) "

Sökning: WFRF:(Ovadnevaite Jurgita)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Radoman, Nikola, 1985- (författare)
  • Enrichment of biogenic and anthropogenic organic substances on sea spray aerosols
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The world’s oceans are the source of one of the most abundant types of natural aerosols, namely sea spray aerosols (SSA). By scattering solar radiation, SSA play a significant role in controlling the Earth’s radiation budget, while they are also involved in the formation of clouds, acting as cloud condensation nuclei (CCN). To understand the connection between biogeochemical processes occurring in the ocean and in the atmosphere, it is crucial to gain better insight into the detailed chemical composition of SSA, which broadly consists of sea salt and marine organic matter. The aim of this thesis is to (1) better understand the impact of ocean biological activity on the chemical composition of SSA and (2) improve the knowledge on the ability of SSA to transport different organic pollutants to the atmosphere. In Paper I it was shown that changes in the composition of marine organic matter during a phytoplankton bloom in the North Atlantic were clearly reflected in the composition of generated SSA. Increased chlorophyll a concentration in seawater was correlated with the presence of lipid-like compounds with high H/C and low O/C atomic ratios, and a consistent trend in chemical composition was observed for subsurface water, the surface microlayer, and generated SSA. Although the effect of biological processes on the composition of SSA organic matter was clear, in Paper II it was shown that during the phytoplankton bloom, the abundance of organic matter in SSA was fairly constant, without any significant influence on their CCN activity or the particle production flux. Paper III provided a mechanistic understanding of the enrichment of different cationic surfactants (CSs) in SSA through experiments conducted using a sea spray simulation chamber. It was shown that enrichment of the CSs was primarily driven by the alkyl chain length of the CSs but also affected by the different functional groups in the CSs. The highest enrichment of CSs on SSA was observed for quaternary amines followed by primary and tertiary amines. Interaction with dissolved humic acid was shown to decrease the enrichment of longer-chain amines while the enrichment was increased for shorter-chain ones. When the plunging jet flow rate was increased, enrichment in SSA was shown to increase, especially for lower water concentrations of surface-active compounds. The purpose of Paper IV was to improve the understanding of the enrichment behavior of perfluoroalkyl acids (PFAAs), which are strong anionic surfactants. Similar to CSs, it was shown that increasing the plunging jet flow increased the enrichment on SSA, from 43-88% for different PFAAs. The effect of different inorganic salts present in seawater on enrichment was also tested. Compared to chamber experiments prepared with ~35% NaCl water matrix, it was shown that the presence of other seawater ions, namely Ca2+ and Mg2+, increased the enrichment of some PFAAs, especially for those with longer perfluoroalkyl chains.
  •  
2.
  • Schmale, Julia, et al. (författare)
  • Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  •  
3.
  • Schmale, Julia, et al. (författare)
  • Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:4, s. 2853-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy