SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pagels J. H.) "

Sökning: WFRF:(Pagels J. H.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6101-6116
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m(3) smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of similar to 5 x 10(6) cm(-3) h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f(43) (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O:C and H:C ratios were similar for the two cases. Classical C-6-C-9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C-10 and C-11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.
  •  
2.
  • Isaxon, Christina, et al. (författare)
  • Characteristics of Welding Fume Aerosol Investigated in Three Swedish Workshops
  • 2009
  • Ingår i: Inhaled Particles X. - : IOP Publishing. - 1742-6596 .- 1742-6588. ; 151
  • Konferensbidrag (refereegranskat)abstract
    • Potentially high human exposures to nanometer sized airborne particles occur due to welding and other thermal processes in industrial environments. Detailed field measurements of physical and chemical particle characteristics were performed in three work-shops in Sweden. Measurements were performed both in the plume 5-20 cm above the welding point and in the background air (more than 5 m away from the nearest known particle source). Particle number and mass concentrations were measured on-line. A low pressure impactor was used for size-resolved chemical particle composition. The in-plume measurements generated the chemical signatures for different welding processes. These signatures were then used to identify contributions from various processes to the particle concentrations in different size classes. The background number and mass concentrations increased by more than an order of magnitude during intense activities in the work-shops compared to low activities during breaks.
  •  
3.
  •  
4.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:12, s. 31725-31765
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy