SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palermo V) "

Sökning: WFRF:(Palermo V)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bécoulet, A., et al. (författare)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
2.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
3.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
4.
  • Ferrari, A. C., et al. (författare)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
5.
  •  
6.
  • Durso, M., et al. (författare)
  • Biomimetic graphene for enhanced interaction with the external membrane of astrocytes
  • 2018
  • Ingår i: Journal of Materials Chemistry B. - : Royal Society of Chemistry (RSC). - 2050-7518 .- 2050-750X. ; 6:33, s. 5335-5342
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.
  •  
7.
  • Vergallo, A., et al. (författare)
  • Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 96, s. 22-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation, a key early pathomechanistic alteration of Alzheimer's disease, may represent either a detrimental or a compensatory mechanism or both (according to the disease stage). YKL-40, a glycoprotein highly expressed in differentiated glial cells, is a candidate biomarker for in vivo tracking neuroinflammation in humans. We performed a longitudinal study in a monocentric cohort of cognitively healthy individuals at risk for Alzheimer's disease exploring whether age, sex, and the apolipoprotein E ε4 allele affect plasma YKL-40 concentrations. We investigated whether YKL-40 is associated with brain amyloid-β (Aβ) deposition, neuronal activity, and neurodegeneration as assessed via neuroimaging biomarkers. Finally, we investigated whether YKL-40 may predict cognitive performance. We found an age-associated increase of YKL-40 and observed that men display higher concentrations than women, indicating a potential sexual dimorphism. Moreover, YKL-40 was positively associated with memory performance and negatively associated with brain Aβ deposition (but not with metabolic signal). Consistent with translational studies, our results suggest a potentially protective effect of glia on incipient brain Aβ accumulation and neuronal homeostasis. © 2020 Elsevier Inc.
  •  
8.
  •  
9.
  •  
10.
  • Crivillers, N, et al. (författare)
  • Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study
  • 2011
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 13:32, s. 14302-14310
  • Tidskriftsartikel (refereegranskat)abstract
    • Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Phi(Au)) when chemisorbed on its surface. In particular we show that the Phi(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Phi(trans)-Phi(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation.
  •  
11.
  • Dell'Elce, Simone, et al. (författare)
  • 3D to 2D reorganization of silver-thiol nanostructures, triggered by solvent vapor annealing
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 10:48, s. 23018-23026
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-organic composites are of great interest for a wide range of applications. The control of their structure remains a challenge, one of the problems being a complex interplay of covalent and supramolecular interactions. This paper describes the self-assembly, thermal stability and phase transitions of ordered structures of silver atoms and thiol molecules spanning from the molecular to the mesoscopic scale. Building blocks of molecularly defined clusters formed from 44 silver atoms, each particle coated by a monolayer of 30 thiol ligands, are used as ideal building blocks. By changing solvent and temperature it is possible to tune the self-assembled 3D crystals of pristine nanoparticles or, conversely, 2D layered structures, with alternated stacks of Ag atoms and thiol monolayers. The study investigates morphological, chemical and structural stability of these materials between 25 and 300 °C in situ and ex situ at the nanoscale by combining optical and electronic spectroscopic and scattering techniques, scanning probe microscopies and density-functional theory (DFT) calculations. The proposed wet-chemistry approach is relatively cheap, easy to implement, and scalable, allowing the fabricated materials with tuned properties using the same building blocks.
  •  
12.
  • Gazzano, Massimo, et al. (författare)
  • A robust, modular approach to produce graphene-MO X multilayer foams as electrodes for Li-ion batteries
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 11:12, s. 5265-5273
  • Tidskriftsartikel (refereegranskat)abstract
    • Major breakthroughs in batteries would require the development of new composite electrode materials, with a precisely controlled nanoscale architecture. However, composites used for energy storage are typically a disordered bulk mixture of different materials, or simple coatings of one material onto another. We demonstrate here a new technique to create complex hierarchical electrodes made of multilayers of vertically aligned nanowalls of hematite (Fe 2 O 3 ) alternated with horizontal spacers of reduced graphene oxide (RGO), all deposited on a 3D, conductive graphene foam. The RGO nanosheets act as porous spacers, current collectors and protection against delamination of the hematite. The multilayer composite, formed by up to 7 different layers, can be used with no further processing as an anode in Li-ion batteries, with a specific capacity of up to 1175 μA h cm -2 and a capacity retention of 84% after 1000 cycles. Our coating strategy gives improved cyclability and rate capacity compared to conventional bulk materials. Our production method is ideally suited to assemble an arbitrary number of organic-inorganic materials in an arbitrary number of layers.
  •  
13.
  • Gorini, Giacomo, et al. (författare)
  • Engagement of monocytes, NK cells, and CD4(+) Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALVAC-HIV/gp120/alum regimen tested in 8,197 human volunteers (61.4% males, 38.6% females) in the RV144 trial decreased the risk of HIV infection similarly in both sexes. The ALVAC-SIV/gp120/alum vaccine also reduced the risk of intrarectal SIVmac251 acquisition in both female and male vaccinated macaques at an average of 44% per exposure. In the current work, we tested whether this vaccine modality could also reduce the risk of intravaginal SIVmac251 exposure. In order to detect correlates of risk, we administered the virus by the intravaginal route and tested another vaccine regimen based on the vaccinia derivative poxvirus NYVAC in parallel. We demonstrate here that the ALVAC-SIV/gp120/alum regimen decreases the risk of vaginal SIVmac251 acquisition (50% vaccine efficacy) and, importantly, we confirmed that subsets of monocytes and CD4(+) T cells are correlates of risk of acquisition. In addition, we uncovered cytotoxic vaginal NKG2A(+) cells and gut-homing alpha(4)beta(7) positive plasmablasts as novel correlates of risk of intravaginal virus acquisition. In contrast, NYVAC-SIV vaccination induced high levels of activated T cells and did not protect against SIVmac251 acquisition. We examined the contrasting immune responses to better understand the correlate of protection and found that the unique ability of ALVAC-SIV to activate early interferon responses and the inflammasome during priming differentiates the two poxvirus vectors. This work demonstrates the reproducibility of the efficacy observed in the ALVAC-based regimen and defines novel correlates of risk in the rigorous SIVmac251 macaque model, establishing a benchmark for future improvement of this vaccine approach. The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14(+) classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14(+) cells and/or their gene expression correlates with blood Type 1 CD4(+) T helper cells, alpha(4)beta(+)(7) plasmablasts, and vaginal cytocidal NKG2A(+) cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4(+)Ki67(+)CD38(+) and CD4(+)Ki67(+)alpha(4)beta(+)(7) T cells, higher SIV envelope-specific IFN-gamma producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A(+) cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
  •  
14.
  • Khaliha, Sara, et al. (författare)
  • Defective graphene nanosheets for drinking water purification : Adsorption mechanism, performance, and recovery
  • 2021
  • Ingår i: FlatChem. - : Elsevier. - 2452-2627. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Defect-rich graphene oxide (dGO) was used as sorbent for organic contaminants of emerging concern in tap water, including drugs and dyes, and the performance compared to those of lower-defects graphene types. The role of holes and carbonyl- carboxylic groups on graphene nanosheets surface on the adsorption mechanism and efficiency was investigated. dGO showed enhanced adsorption capacity toward two fluoroquinolone antibiotics (ofloxacin, OFLOX, and ciprofloxacin, CIPRO) in tap water with a maximum capacity of 650 mg/g, compared to 204 mg/g for Hummers derived commercial GO (hGO) and 125 mg/g for less defected Brodie derived GO (bGO) for OFLOX. The role of defects on the selective adsorption of OFLOX was also modelled by MD simulations, highlighting a mechanism mainly driven by the shape complementarity between the graphene holes and the molecules. Adsorption isotherms revealed different adsorption model for dGO, with a Langmuir fitting for dGO and BET fitting for all the other investigated samples. The maximum adsorption capacity of dGO for OFLOX was about six times higher than that of Granular Activated Carbon (95 mg/g), the industrial adsorption standard technology. Finally, it was also demonstrated that dGO can be recovered from treated water by ultrafiltration, this preventing secondary contamination risks and enabling safe use of graphene nanosheets for water purification.
  •  
15.
  • Kovtun, Alessandro, et al. (författare)
  • Benchmarking of graphene-based materials: Real commercial products versus ideal graphene
  • 2019
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There are tens of industrial producers claiming to sell graphene and related materials (GRM), mostly as solid powders. Recently the quality of commercial GRM has been questioned, and procedures for GRM quality control were suggested using Raman Spectroscopy or Atomic Force Microscopy. Such techniques require dissolving the sample in solvents, possibly introducing artefacts. A more pragmatic approach is needed, based on fast measurements and not requiring any assumption on GRM solubility. To this aim, we report here an overview of the properties of commercial GRM produced by selected companies in Europe, USA and Asia. We benchmark: (A) size, (B) exfoliation grade and (C) oxidation grade of each GRM versus the ones of 'ideal' graphene and, most importantly, versus what reported by the producer. In contrast to previous works, we report explicitly the names of the GRM producers and we do not re-dissolve the GRM in solvents, but only use techniques compatible with industrial powder metrology. A general common trend is observed: Products having low defectivity (%sp 2 bonds >95%) feature low surface area (<200 m 2 g -1 ), while highly exfoliated GRM show a lower sp 2 content, demonstrating that it is still challenging to exfoliate GRM at industrial level without adding defects.
  •  
16.
  • Palermo, V., et al. (författare)
  • Influence of molecular order on the local work function of nanographene architectures : A Kelvin-probe force microscopy study
  • 2005
  • Ingår i: ChemPhysChem. - : Wiley. - 1439-4235 .- 1439-7641. ; 6:11, s. 2371-2375
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a Kelvin-probe force microscopy (KPFM) investigation on the structural and electronic properties of different submicronscale supramolecular architectures of a synthetic nanographene, including extended layers, percolated networks and broken patterm grown from solutions at surfaces. This study made it possible to determine the local work function (WF) of the different p-conjugated nanostructures adsorbed on mica with a resolution below 10 nm and 0.05 eV. It revealed that the WF strongly depends on the local molecular order at the surface, in particular on the delocalization of electrons in the p-states, on the molecular orientation at surfaces, on the molecular packing density, on the presence of defects in the film and on the different conformations of the aliphatic peripheral chains that might cover the conjugated core. These results were confirmed by comparing the KPFM-estimated local WF of layers supported on mica, where the molecules are preferentially packed edge-on on the substrate, with the ultraviolet photoelectron spectroscopy microscopically measured WF of layers adsorbed on graphite, where the molecules should tend to assemble face-on at the surface. It appears that local WF studies are of paramount importance for understanding the electronic properties of active organic nanostructures, being therefore fundamental for the building of high-performance organic electronic devices, including field-effect transistors, light-emitting diodes and solar cells. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.
  •  
17.
  • Paone, E., et al. (författare)
  • Customization of OpenCL applications for efficient task mapping under heterogeneous platform constraints
  • 2015
  • Ingår i: Proceedings -Design, Automation and Test in Europe, DATE. - New Jersey : IEEE conference proceedings. - 9783981537048 ; , s. 736-741
  • Konferensbidrag (refereegranskat)abstract
    • When targeting an OpenCL application to platforms with multiple heterogeneous accelerators, task tuning and mapping have to cope with device-specific constraints. To address this problem, we present an innovative design flow for the customization and performance optimization of OpenCL applications on heterogeneous parallel platforms. It consists of two phases: 1) a tuning phase that optimizes each application kernel for a given platform and 2) a task-mapping phase that maximizes the overall application throughput by exploiting concurrency in the application task graph. The tuning phase is suitable for customizing parameterized OpenCL kernels considering device-specific constraints. Then, the mapping phase improves task-level parallelism for multi-device execution accounting for the overhead of memory transfers - overheads implied by multiple OpenCL contexts for different device vendors. Benefits of the proposed design flow have been assessed on a stereo-matching application targeting two commercial heterogeneous platforms.
  •  
18.
  • Pierleoni, Davide, et al. (författare)
  • Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:13, s. 11242-11250
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of polymer-based membranes for gas separation is currently limited by the Robeson limit, stating that it is impossible to have high gas permeability and high gas selectivity at the same time. We describe the production of membranes based on the ability of graphene oxide (GO) and poly(ethyleneimine) (PEI) multilayers to overcome such a limit. The PEI chains act as molecular spacers in between the GO sheets, yielding a highly reproducible, periodic multilayered structure with a constant spacing of 3.7 nm, giving a record combination of gas permeability and selectivity. The membranes feature a remarkable gas selectivity (up to 500 for He/CO 2 ), allowing to overcome the Robeson limit. The permeability of these membranes to different gases depends exponentially on the diameter of the gas molecule, with a sieving mechanism never obtained in pure GO membranes, in which a size cutoff and a complex dependence on the chemical nature of the permeant is typically observed. The tunable permeability, the high selectivity, and the possibility to produce coatings on a wide range of polymers represent a new approach to produce gas separation membranes for large-scale applications.
  •  
19.
  • Pierleoni, Davide, et al. (författare)
  • Structure and sieving mechanism of high selective graphene-based membranes
  • 2018
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1981
  • Konferensbidrag (refereegranskat)abstract
    • Graphene oxide was used as charge able to confer high selectivity to the final product. A self-assembling technique, namely layer-by-layer has been developed to stratify graphene-based coating on polymeric films; this coating is composed by nanolayers of graphene oxide alternated with polymers, bonded each other by electrostatic forces. Permeability measurement on layered Matrimid®, a commercial polyimide, showed incredibly high selectivity values to small particle mixtures, as O2, CO2, He and H2. Through simple post-treatments the selective performance was also improved, as demonstration of potentiality of the well-ordered bi-dimensional system: improvement on the coating would make this material one of the viable solution for industrial separations, e.g. hydrogen purification in sustainable energy production. A further investigation on similar structures obtained by other strategies shall demonstrate the peculiar mechanism occurring in this material for high selective performance.
  •  
20.
  • Schiller, D, et al. (författare)
  • The Human Affectome
  • 2024
  • Ingår i: Neuroscience and biobehavioral reviews. - 1873-7528. ; 158, s. 105450-
  • Tidskriftsartikel (refereegranskat)
  •  
21.
  • Sun, Jinhua, 1987, et al. (författare)
  • Covalent Organic Framework (COF-1) under High Pressure
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:3, s. 1087-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • COF-1 has a structure with rigid 2D layers composed of benzene and B3O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12–15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10–15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100]=111(5) GPa, k[001]=15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
22.
  • Sun, Jinhua, 1987, et al. (författare)
  • Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium‐sulfur (Li‐S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state‐of‐the‐art lithium‐ion (Li‐ion) batteries owing to their high energy density, low cost, and eco‐compatibility. However, the migration of high‐order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface. In this study, the grafting of versatile functional groups with designable properties (e.g., catalytic effects) directly on the surface of the carbon host is proposed to enhance interactions with LiPs. As model systems, benzene groups containing N/O and S/O atoms are vertically grafted and uniformly distributed on the surface of expanded reduced graphene oxide, fostering a stable interface between the cathode and LiPs. The combination of experiments and density functional theory calculations demonstrate improvements in chemical interactions between graphene and LiPs, with an enhancement in the electrochemical kinetics, power, and energy densities.
  •  
23.
  • Vistoli, Giulio, et al. (författare)
  • MEDIATE - Molecular DockIng at homE: Turning collaborative simulations into therapeutic solutions
  • 2023
  • Ingår i: Expert Opinion on Drug Discovery. - : Taylor and Francis Ltd.. - 1746-0441 .- 1746-045X. ; 18:8, s. 821-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Collaborative computing has attracted great interest in the possibility of joining the efforts of researchers worldwide. Its relevance has further increased during the pandemic crisis since it allows for the strengthening of scientific collaborations while avoiding physical interactions. Thus, the E4C consortium presents the MEDIATE initiative which invited researchers to contribute via their virtual screening simulations that will be combined with AI-based consensus approaches to provide robust and method-independent predictions. The best compounds will be tested, and the biological results will be shared with the scientific community. Areas covered: In this paper, the MEDIATE initiative is described. This shares compounds’ libraries and protein structures prepared to perform standardized virtual screenings. Preliminary analyses are also reported which provide encouraging results emphasizing the MEDIATE initiative’s capacity to identify active compounds. Expert opinion: Structure-based virtual screening is well-suited for collaborative projects provided that the participating researchers work on the same input file. Until now, such a strategy was rarely pursued and most initiatives in the field were organized as challenges. The MEDIATE platform is focused on SARS-CoV-2 targets but can be seen as a prototype which can be utilized to perform collaborative virtual screening campaigns in any therapeutic field by sharing the appropriate input files.
  •  
24.
  • Xia, Zhenyuan, 1983, et al. (författare)
  • Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide
  • 2019
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:24, s. 15122-15130
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade, electrochemical exfoliation of graphite has aroused great interest from both academia and industry for mass production of graphene sheets. Electrochemically exfoliated graphene oxide (EGO) features a much better tunability than chemically EGO, or even than graphene obtained with ultrasonic exfoliation. Chemical and electrical properties of EGO can be modified extensively, thanks to its step-controllable oxidation process, varying the electrolytes and/or the applied potential. It is thus possible, using tunable electrochemical oxidation, to produce low-defect EGO sheets, featuring both good electric conductivity and good dispersibility in common solvents (e.g., acetonitrile or isopropanol). This greatly facilitates its application in several fields, for example, in flexible electronics. In this work, we correlate the dispersion behavior of EGO with its chemical properties using the relative Hansen solubility parameter, zeta potential values, X-ray photoemission spectroscopy, and Raman analysis. A surface morphology study by atomic force microscopy and transmission electron microscopy analyses also reveals that EGO sheets are multiple structures of (partially oxidized) graphene bilayers. Conductive EGO films could be easily prepared by vacuum filtration on different substrates, obtaining electrical conductivity values of up to ∼104 S/m with no need for further reduction procedures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy