SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palme Anna 1986) "

Sökning: WFRF:(Palme Anna 1986)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palme, Anna, 1986, et al. (författare)
  • Development of an efficient route for combined recycling of PET and cotton from mixed fabrics
  • 2017
  • Ingår i: Textiles and Clothing Sustainability. - : Springer Science and Business Media LLC. - 2197-9936. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Most textile waste is either incinerated or landfilled today, yet, the material could instead be recycled through chemical recycling to new high-quality textiles. A first important step is separation since chemical recycling of textiles requires pure streams. The focus of this paper is on the separation of cotton and PET (poly(ethylene terephthalate), polyester) from mixed textiles, so called polycotton. Polycotton is one of the most common materials in service textiles used in sheets and towels at hospitals and hotels. A straightforward process using 5–15 wt% NaOH in water and temperature in the range between 70 and 90 °C for the hydrolysis of PET was evaluated on the lab-scale. In the process, the PET was degraded to terephthalic acid (TPA) and ethylene glycol (EG). Three product streams were generated from the process. First is the cotton; second, the TPA; and, third, the filtrate containing EG and the process chemicals. The end products and the extent of PET degradation were characterized using light microscopy, UV-spectroscopy, and ATR FT-IR spectroscopy, as well as solution and solid-state NMR spectroscopy. Furthermore, the cotton cellulose degradation was evaluated by analyzing the intrinsic viscosity of the cotton cellulose. The findings show that with the addition of a phase transfer catalyst (benzyltributylammonium chloride (BTBAC)), PET hydrolysis in 10% NaOH solution at 90 °C can be completed within 40 min. Analysis of the degraded PET with NMR spectroscopy showed that no contaminants remained in the recovered TPA, and that the filtrate mainly contained EG and BTBAC (when added). The yield of the cotton cellulose was high, up to 97%, depending on how long the samples were treated. The findings also showed that the separation can be performed without the phase transfer catalyst; however, this requires longer treatment times, which results in more cellulose degradation.
  •  
2.
  • Bengtsson-Palme, Johan, 1985, et al. (författare)
  • Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data
  • 2013
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 4:10, s. 914-919
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the primary choice for molecular identification of fungi. Its two highly variable spacers (ITS1 and ITS2) are usually species specific, whereas the intercalary 5.8S gene is highly conserved. For sequence clustering and blast searches, it is often advantageous to rely on either one of the variable spacers but not the conserved 5.8S gene. To identify and extract ITS1 and ITS2 from large taxonomic and environmental data sets is, however, often difficult, and many ITS sequences are incorrectly delimited in the public sequence databases. We introduce ITSx, a Perl-based software tool to extract ITS1, 5.8S and ITS2 – as well as full-length ITS sequences – from both Sanger and high-throughput sequencing data sets. ITSx uses hidden Markov models computed from large alignments of a total of 20 groups of eukaryotes, including fungi, metazoans and plants, and the sequence extraction is based on the predicted positions of the ribosomal genes in the sequences. ITSx has a very high proportion of true-positive extractions and a low proportion of false-positive extractions. Additionally, process parallelization permits expedient analyses of very large data sets, such as a one million sequence amplicon pyrosequencing data set. ITSx is rich in features and written to be easily incorporated into automated sequence analysis pipelines. ITSx paves the way for more sensitive blast searches and sequence clustering operations for the ITS region in eukaryotes. The software also permits elimination of non-ITS sequences from any data set. This is particularly useful for amplicon-based next-generation sequencing data sets, where insidious non-target sequences are often found among the target sequences. Such non-target sequences are difficult to find by other means and would contribute noise to diversity estimates if left in the data set.
  •  
3.
  • Palme, Anna, 1986, et al. (författare)
  • Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose
  • 2016
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617. ; 136, s. 1281-1287
  • Tidskriftsartikel (refereegranskat)abstract
    • The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected.
  •  
4.
  • Palme, Anna, 1986 (författare)
  • Characterization of cellulose in post-consumer cotton textiles
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The overall objective of this thesis is to provide a background to the recycling of cotton. Since cotton consists of pure cellulose, it might be possible to include used cotton, in the already existing viscose industry. In this thesis two aspects important to accomplishing this task have been studied; changes that occur in cotton fibres during service life, and comparison between cotton and dissolving pulp in terms of susceptibility to acid hydrolysis.During the service life of a cotton textile, it is laundered many times, exposing it to numerous drying and rewetting cycles. From research on paper recycling, it is well known that drying and rewetting induce hornification of cellulosic fibres, making the fibres stiff and less porous. However, no increase in the degree of hornification, during the service life of cotton fibres has been measured, probably due to the high initial hornification of cotton fibres. Laundering, however, decreases the mass average molecular mass of cellulose, down to 151 kDa, after more than 50 laundering cycles, from 1323 kDa in a never-laundered sheet.The second aspect studied was reactivity of different cellulosic fibres towards acid hydrolysis. It was found that laundering had no effect on the levelling off degree of polymerization (LODP). Despite the initial large difference between new sheets and discarded sheets, the molecular mass distributions were quite similar for the sheet samples, after only 60 min of hydrolysis (0.4 M HCl, 80 °C). With textile recycling in mind, this is promising, since textiles sent for recycling will have been though a different number of laundering cycles.
  •  
5.
  • Palme, Anna, 1986, et al. (författare)
  • Chemical and ultrastructural changes in cotton cellulose induced by laundering and textile use
  • 2014
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 21:6, s. 4681-4691
  • Tidskriftsartikel (refereegranskat)abstract
    • The textile industry is currently under pressure to decrease environmental load related to both the manufacture and the use of textiles. Material recycling may be one of many ways to accomplish such a decrease. Age-induced property changes in cotton textiles are important to understand in order to facilitate the recycling of cotton textiles. Consequently, this study investigates ultrastructural and chemical changes that take place in the cellulose of cotton sheets over a long time period of use and laundering. Ultrastructural changes were studied using water retention value (WRV), specific surface area measurement, scanning electron microscopy and solid state NMR spectroscopy. Chemical changes through measurement of intrinsic viscosity with and without reductive treatment, molecular mass distribution and carboxylate group content. A substantial decrease in mass average molecular mass from 1,320 to 151 kDa was observed when subjecting the sheets to more than 50 launderings. In contrast, only small differences in WRV, in fibril dimensions and crystallinity estimated using solid state NMR spectra, were observed between sheets laundered 2-4 times and more than 50 times. On one hand, the combination of minor laundering effects of WRV and solid state NMR spectra, together with the large decrease in molecular mass are positive indications for the possibility of recycling cotton into regenerated cellulosic fibres. On the other hand, results show that the specific surface area decreased, which implies that the reactivity of cotton cellulose may decrease during long-term use and laundering.
  •  
6.
  • Palme, Anna, 1986, et al. (författare)
  • Differences in swelling of chemical pulp fibers and cotton fibers-Effect of the supramolecular structure
  • 2019
  • Ingår i: BioResources. - : North Carolina State University. - 1930-2126. ; 14:3, s. 5698-5715
  • Tidskriftsartikel (refereegranskat)abstract
    • The swelling and dissolution of cellulose are key parameters in the production of regenerated cellulose fibers. Since cotton is almost pure cellulose, it has been proposed that the recycling of cotton textiles may be accomplished through incorporating the cotton textiles into the production of regenerated cellulosic fibers. In this study, the supramolecular structure before and after pretreatment was characterized using solid-state carbon-13 nuclear magnetic resonance (13C NMR), and the findings related to the swelling of dissolving pulp and cotton were quantified with a fiber analyzer. The cotton and dissolving pulp samples were subjected to three different pretreatments: mild acid hydrolysis, acid hydrolysis in ethanol, and a hydrothermal treatment. The results showed that cotton was harder to swell than the dissolving pulp. This indicated that either waste cotton requires another type of activating pretreatment than those included in this study or very good solvents if it is to be included in the production of regenerated fibers. 
  •  
7.
  • Palme, Anna, 1986 (författare)
  • Recycling of cotton textiles: Characterization, pretreatment, and purification
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In many parts of the world, there are well-established systems for material recycling of metal, glass, and paper. However, no large-scale chemical recycling of textiles currently exists. Since the collection of second hand textiles is established on a large-scale, one of the main barriers to obtaining chemical textile recycling is the development of recycling technology. Recently, it has been proposed that recycling cotton may be accomplished using post-consumer cotton to produce regenerated cellulose fibers, such as viscose and lyocell. These fibers are, today, made either from wood-derived dissolving pulp or cotton linters, both of which contain almost pure cellulose. The incorporation of used cotton fibers from textiles is an interesting possibility since cotton also contains almost pure cellulose. The most common textile material on the market contains a mix of polyester, i.e. poly(ethylene terephthalate) (PET), and cotton, referred to as polycotton, and the separation of the two components is necessary before recycling. This thesis investigates some important aspects of the chemical recycling of textiles. The focus is on four areas; property changes during laundering and use of cotton, acid pretreatment of cotton, swelling properties of cotton, and separation of cotton from polycotton textiles.The first part is based on that during the service life of cotton textiles, laundering is performed many times, and this may change the properties of cotton. When new cotton fibers are compared to cotton fibers from sheets that have been used in hospitals for a long period of time, findings show that laundering and use do not have a large impact on the supramolecular structure of cotton cellulose. However, the cellulose the degree of polymerization decrease greatly after long-term use.The second and third parts of the thesis investigate the pretreatment of cotton. Pretreatments of cellulose fibers are used to enhance susceptibility to dissolution before the production of regenerated fibers. Three different pretreatments were investigated, acid hydrolysis in water, acid hydrolysis in ethanol and hydrothermal treatment. Findings show that the degradation pattern is similar in cotton and dissolving pulp for all pretreatments.The last part of the thesis investigates the separation of the components in polycotton. In the process, polyester is hydrolyzed by the action of alkali while cotton is maintained. The process yields three product streams; two containing the two different monomers obtained when hydrolyzing the PET, and one with residual cotton. The yield of the process is high, and the fractions showed high purity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy