SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paluoja P) "

Sökning: WFRF:(Paluoja P)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Paloviita, P, et al. (författare)
  • Small RNA expression and miRNA modification dynamics in human oocytes and early embryos
  • 2021
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 31:8, s. 1474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3′ mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.
  •  
3.
  •  
4.
  • Paluoja, P, et al. (författare)
  • Systematic evaluation of NIPT aneuploidy detection software tools with clinically validated NIPT samples
  • 2021
  • Ingår i: PLoS computational biology. - : Public Library of Science (PLoS). - 1553-7358. ; 17:12, s. e1009684-
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no prior comprehensive, head-to-head accuracy comparison of the various tools has been published. Here, we compared the outcome accuracies obtained for clinically validated samples with five commonly used computational NIPT aneuploidy analysis tools (WisecondorX, NIPTeR, NIPTmer, RAPIDR, and GIPseq) across various sequencing depths (coverage) and fetal DNA fractions. The sample set included cases of fetal trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome). We determined that all of the compared tools were considerably affected by lower sequencing depths, such that increasing proportions of undetected trisomy cases (false negatives) were observed as the sequencing depth decreased. We summarised our benchmarking results and highlighted the advantages and disadvantages of each computational NIPT software. To conclude, trisomy detection for lower coverage NIPT samples (e.g. 2.5M reads per sample) is technically possible but can, with some NIPT tools, produce troubling rates of inaccurate trisomy detection, especially in low-FF samples.
  •  
5.
  • Sauk, M, et al. (författare)
  • NIPTmer: rapid k-mer-based software package for detection of fetal aneuploidies
  • 2018
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 5616-
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive prenatal testing (NIPT) is a recent and rapidly evolving method for detecting genetic lesions, such as aneuploidies, of a fetus. However, there is a need for faster and cheaper laboratory and analysis methods to make NIPT more widely accessible. We have developed a novel software package for detection of fetal aneuploidies from next-generation low-coverage whole genome sequencing data. Our tool – NIPTmer – is based on counting pre-defined per-chromosome sets of unique k-mers from raw sequencing data, and applying linear regression model on the counts. Additionally, the filtering process used for k-mer list creation allows one to take into account the genetic variance in a specific sample, thus reducing the source of uncertainty. The processing time of one sample is less than 10 CPU-minutes on a high-end workstation. NIPTmer was validated on a cohort of 583 NIPT samples and it correctly predicted 37 non-mosaic fetal aneuploidies. NIPTmer has the potential to reduce significantly the time and complexity of NIPT post-sequencing analysis compared to mapping-based methods. For non-commercial users the software package is freely available at http://bioinfo.ut.ee/NIPTMer/.
  •  
6.
  • Teder, H, et al. (författare)
  • TAC-seq: targeted DNA and RNA sequencing for precise biomarker molecule counting
  • 2018
  • Ingår i: NPJ genomic medicine. - : Springer Science and Business Media LLC. - 2056-7944. ; 3, s. 34-
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeted next-generation sequencing (NGS) methods have become essential in medical research and diagnostics. In addition to NGS sensitivity and high-throughput capacity, precise biomolecule counting based on unique molecular identifier (UMI) has potential to increase biomolecule detection accuracy. Although UMIs are widely used in basic research its introduction to clinical assays is still in progress. Here, we present a robust and cost-effective TAC-seq (Targeted Allele Counting by sequencing) method that uses UMIs to estimate the original molecule counts of mRNAs, microRNAs, and cell-free DNA. We applied TAC-seq in three different clinical applications and compared the results with standard NGS. RNA samples extracted from human endometrial biopsies were analyzed using previously described 57 mRNA-based receptivity biomarkers and 49 selected microRNAs at different expression levels. Cell-free DNA aneuploidy testing was based on cell line (47,XX, +21) genomic DNA. TAC-seq mRNA profiling showed identical clustering results to transcriptome RNA sequencing, and microRNA detection demonstrated significant reduction in amplification bias, allowing to determine minor expression changes between different samples that remained undetermined by standard NGS. The mimicking experiment for cell-free DNA fetal aneuploidy analysis showed that TAC-seq can be applied to count highly fragmented DNA, detecting significant (p = 7.6 × 10−4) excess of chromosome 21 molecules at 10% fetal fraction level. Based on three proof-of-principle applications we demonstrate that TAC-seq is an accurate and highly potential biomarker profiling method for advanced medical research and diagnostics.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy