SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pankratova Stanislava) "

Sökning: WFRF:(Pankratova Stanislava)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christiansen, Line I., et al. (författare)
  • Insulin-Like Growth Factor-1 Supplementation Promotes Brain Maturation in Preterm Pigs
  • 2023
  • Ingår i: eNeuro. - 2373-2822. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Very preterm infants show low levels of insulin-like growth factor-1 (IGF-1), which is associated with postnatal growth restriction and poor neurologic outcomes. It remains unknown whether supplemental IGF-1 may stimulate neurode-velopment in preterm neonates. Using cesarean-delivered preterm pigs as a model of preterm infants, we investi-gated the effects of supplemental IGF-1 on motor function and on regional and cellular brain development. Pigs were treated with 2.25 mg/kg/d recombinant human IGF-1/IGF binding protein-3 complex from birth until day 5 or 9 before the collection of brain samples for quantitative immunohistochemistry (IHC), RNA sequencing, and quantitative PCR analyses. Brain protein synthesis was measured using in vivo labeling with [2H5] phenylalanine. We showed that the IGF-1 receptor was widely distributed in the brain and largely coexisted with immature neurons. Region-spe-cific quantification of IHC labeling showed that IGF-1 treatment promoted neuronal differentiation, increased subcorti-cal myelination, and attenuated synaptogenesis in a region-dependent and time-dependent manner. The expression levels of genes involved in neuronal and oligodendrocyte maturation, and angiogenic and transport functions were al-tered, reflecting enhanced brain maturation in response to IGF-1 treatment. Cerebellar protein synthesis was increased by 19% at day 5 and 14% at day 9 after IGF-1 treatment. Treatment had no effect on Iba1+ microglia or regional brain weights and did not affect motor development or the expression of genes related to IGF-1 signaling. In conclusion, the data show that supplemental IGF-1 promotes brain maturation in newborn preterm pigs. The results provide further support for IGF-1 supplementation therapy in the early postnatal period in preterm infants.
  •  
2.
  • Dmytriyeva, Oksana, et al. (författare)
  • Neurotrophic Effects of Vascular Endothelial Growth Factor B and Novel Mimetic Peptides on Neurons from the Central Nervous System
  • 2020
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 11:9, s. 1270-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor B (VEGFB) is a pleiotropic trophic factor, which in contrast to the closely related VEGFA is known to have a limited effect on angiogenesis. VEGFB improves survival in various tissues including the nervous system, where the effect was observed mainly for peripheral neurons. The neurotrophic effect of VEGFB on central nervous system neurons has been less investigated. Here we demonstrated that VEGFB promotes neurite outgrowth from primary cerebellar granule, hippocampal, and retinal neurons in vitro. VEGFB protected hippocampal and retinal neurons from both oxidative stress and glutamate-induced neuronal death. The VEGF receptor 1 (VEGFR1) is required for VEGFB-induced neurotrophic and neuroprotective effects. Using a structure-based approach, we designed short peptides, termed Vefin1-7, mimicking the binding interface of VEGFB to VEGFR1. Vefins were analyzed for their secondary structure and binding to VEGF receptors and compared with previously described peptides derived from VEGFA, another ligand of VEGFR1. We show that Vefins have neurotrophic and neuroprotective effects on primary hippocampal, cerebellar granule, and retinal neurons in vitro with potencies comparable to VEGFB. Similar to VEGFB, Vefins were not mitogenic for MCF-7 cancer cells. Furthermore, one of the peptides, Vefin7, even dose-dependently inhibited the proliferation of MCF-7 cells in vitro. Unraveling the neurotrophic and neuroprotective potentials of VEGFB, the only nonangiogenic factor of the VEGF family, is promising for the development of neuroprotective peptide-based therapies.
  •  
3.
  • Garcia-Bennett, Alfonso E., et al. (författare)
  • Delivery of Differentiation Factors by Mesoporous Silica Particles Assists Advanced Differentiation of Transplanted Murine Embryonic Stem Cells
  • 2013
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 2:11, s. 906-915
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation.
  •  
4.
  • Garcia-Bennett, Alfonso E., et al. (författare)
  • In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles
  • 2014
  • Ingår i: Nanomedicine. - 1743-5889 .- 1748-6963. ; 9:16, s. 2457-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous nanoparticles could be effective for stem cell differentiation in vitro. Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells. Conclusion: Repeated administration of soluble factors into a culture medium can be avoided due to a sustained release effect using mesoporous silica.
  •  
5.
  • Garcia-Bennett, Alfonso, et al. (författare)
  • In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles
  • 2014
  • Ingår i: Nanomedicine. - : Future Medicine Ltd. - 1743-5889 .- 1748-6963. ; 9:16, s. 2457-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous nanoparticles could be effective for stem cell differentiation in vitro.Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry.Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells.Conclusion: Repeated administration of soluble factors into a culture medium can be avoided due to a sustained release effect using mesoporous silica.
  •  
6.
  • Gonzalez-Franquesa, Alba, et al. (författare)
  • Discovery of thymosin β4 as a human exerkine and growth factor
  • 2021
  • Ingår i: American Journal of Physiology - Cell Physiology. - : American Physiological Society. - 0363-6143 .- 1522-1563. ; 321:5, s. 770-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin b4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.
  •  
7.
  • Hoeber, Jan, 1986-, et al. (författare)
  • A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord
  • 2017
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 26:14, s. 1065-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (MesoMIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along "bridges" formed by migrating stem cells. Coimplantation of MesoMIM prevented stem cell migration, "bridges" were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular "bridges" in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient alternative way to induce sensory axon regeneration, and (3) a combinatorial approach of individually beneficial components is not necessarily additive, but can be counterproductive for axonal growth.
  •  
8.
  • Szczygieł, Julia Alicja, et al. (författare)
  • Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy : Preclinical Data in Rats
  • 2020
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene therapy to treat pharmacoresistant temporal lobe epilepsy in humans is now being developed using an AAV vector (CG01) that encodes the combination of neuropeptide Y and its antiepileptic receptor Y2. With this in mind, the present study aimed to provide important preclinical data on the effects of CG01 on the duration of transgene expression, cellular tropism, and potential side effects on body weight and cognitive function. The CG01 vector was administered unilaterally into the dorsal and ventral hippocampus of adult male rats and expression of both transgenes was found to remain elevated without a sign of decline at 6 months post-injection. CG01 appeared to mediate expression selectively in hippocampal neurons, without expression in astrocytes or oligodendrocytes. No effects were seen on body weight as well as on short- or long-term memory as revealed by testing in the Y-maze or Morris water maze tests. Thus these data show that unilateral CG01 vector treatment as future gene therapy in pharmacoresistant temporal lobe epilepsy patients should result in stable and long-term expression predominantly in neurons and be well tolerated without side effects on body weight and cognitive function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Pankratova, Stanisla ... (8)
Zhou, Chunfang (4)
Kozlova, Elena (3)
Kozhevnikova, Mariya (3)
Trolle, Carl (3)
Kozlova, Elena N (2)
visa fler...
Hoeber, Jan, 1986- (2)
Garcia-Bennett, Alfo ... (2)
Abrahamsson, Ninnie (2)
König, Niclas (2)
Agerman, Karin (1)
Fredriksson, Robert (1)
Holmqvist, Bo (1)
Ley, David (1)
Kokaia, Merab (1)
Treebak, Jonas T. (1)
Aldskogius, Håkan (1)
Aldskogius, Håkan, 1 ... (1)
Woldbye, David P D (1)
Jørgensen, Niklas Ry ... (1)
Åkesson, Elisabet (1)
Garcia-Bennett, Alfo ... (1)
Gheibi, Sevda (1)
Borg, Melissa L. (1)
Zierath, Juleen R (1)
Krook, Anna (1)
Melin, Esbjörn (1)
König, Niclas, 1986- (1)
Björnholm, Marie (1)
Karlsson, Håkan K R (1)
Chibalin, Alexander ... (1)
Thymann, Thomas (1)
Lekholm, Emilia (1)
Christiansen, Anders ... (1)
Christiansen, Line I ... (1)
Pan, Xiaoyu (1)
Holgersen, Kristine (1)
Lindholm, Sandy E.H. (1)
Henriksen, Nicole L. (1)
Burrin, Douglas G. (1)
Sangild, Per Torp (1)
Deshmukh, Atul S (1)
Dmytriyeva, Oksana (1)
Ajenjo, Amaia de Die ... (1)
Lundo, Kathrine (1)
Hertz, Henrik (1)
Rasmussen, Kim K. (1)
Klingelhofer, Jorg (1)
Nielsen, Alexander L ... (1)
Clemmensen, Christof ... (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Lunds universitet (3)
Karolinska Institutet (2)
Stockholms universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy