SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Panopoulou Georgia 1989) "

Sökning: WFRF:(Panopoulou Georgia 1989)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • al., et, et al. (författare)
  • Polarized blazar X-rays imply particle acceleration in shocks
  • 2022
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 611:7937
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1-3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.
  •  
2.
  • Andersson, B. -G., et al. (författare)
  • Ultraviolet spectropolarimetry with polstar: interstellar medium science
  • 2022
  • Ingår i: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 1572-946X .- 0004-640X. ; 367
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter<0.09 μm), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called "Ground State Alignment", a potentially powerful new probe of magnetic fields in the diffuse ISM.
  •  
3.
  • Blinov, Dmitriy, et al. (författare)
  • RoboPol: AGN polarimetric monitoring data
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:3, s. 3715-3726
  • Tidskriftsartikel (refereegranskat)abstract
    • We present uniformly reprocessed and re-calibrated data from the RoboPol programme of optopolarimetric monitoring of active galactic nuclei (AGNs), covering observations between 2013, when the instrument was commissioned, and 2017. In total, the data set presented in this paper includes 5068 observations of 222 AGN with Dec. > -25○. We describe the current version of the RoboPol pipeline that was used to process and calibrate the entire data set, and we make the data publicly available for use by the astronomical community. Average quantities summarizing optopolarimetric behaviour (average degree of polarization, polarization variability index) are also provided for each source we have observed and for the time interval we have followed it.
  •  
4.
  • Blinov, Dmitriy, et al. (författare)
  • RoboPol: connection between optical polarization plane rotations and gamma-ray flares in blazars
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:1, s. 1296-1306
  • Tidskriftsartikel (refereegranskat)abstract
    • We use results of our 3 yr polarimetric monitoring programme to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by RoboPol is analysed together with the gamma-ray data provided by Fermi-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time-scales of rotations and flares are marginally correlated.
  •  
5.
  • Blinov, Dmitriy, et al. (författare)
  • RoboPol: do optical polarization rotations occur in all blazars?
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:2, s. 1175-1785
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new set of optical polarization plane rotations in blazars, observed during the third year of operation of RoboPol. The entire set of rotation events discovered during three years of observations is analysed with the aim of determining whether these events are inherent in all blazars. It is found that the frequency of the polarization plane rotations varies widely among blazars. This variation cannot be explained either by a difference in the relativistic boosting or by selection effects caused by a difference in the average fractional polarization. We conclude that the rotations are characteristic of a subset of blazars and that they occur as a consequence of their intrinsic properties.
  •  
6.
  • Blinov, Dmitriy, et al. (författare)
  • RoboPol: first season rotations of optical polarization plane in blazars
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 453:2, s. 1669-1683
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10-2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼5 × 10-5) that none of our rotations is physically connected with an increase in gamma-ray activity.
  •  
7.
  • Blinov, Dmitriy, et al. (författare)
  • RoboPol: optical polarization-plane rotations and flaring activity in blazars
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 457:2, s. 2252-2262
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.
  •  
8.
  • Blinov, D., et al. (författare)
  • The RoboPol sample of optical polarimetric standards
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Optical polarimeters are typically calibrated using measurements of stars with known and stable polarization parameters. However, there is a lack of such stars available across the sky. Many of the currently available standards are not suitable for medium and large telescopes due to their high brightness. Moreover, as we find, some of the polarimetric standards used are in fact variable or have polarization parameters that differ from their cataloged values. Aims. Our goal is to establish a sample of stable standards suitable for calibrating linear optical polarimeters with an accuracy down to 10-3 in fractional polarization. Methods. For 4 yr, we have been running a monitoring campaign of a sample of standard candidates comprised of 107 stars distributed across the northern sky. We analyzed the variability of the linear polarization of these stars, taking into account the non-Gaussian nature of fractional polarization measurements. For a subsample of nine stars, we also performed multiband polarization measurements. Results. We created a new catalog of 65 stars (see Table 2) that are stable, have small uncertainties of measured polarimetric parameters, and can be used as calibrators of polarimeters at medium and large telescopes.
  •  
9.
  • Burris, William A., et al. (författare)
  • IRAS 00450+7401 and the Mid-infrared Fade/Burst Cycle of R Coronae Borealis-type Stars
  • 2023
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 166:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical and infrared imaging and spectroscopy of the R Coronae Borealis-type (R Cor Bor) star IRAS 00450+7401. Optical spectra further confirm its classification as a cool R Cor Bor system, having a hydrogen-deficient carbon star spectral subclass of HdC5 or later. Mid-infrared spectroscopy reveals the typical ∼8 μm “hump” seen in other R Cor Bor stars and no other features. A modern-epoch spectral energy distribution shows bright emission from hot dust having T dust > 600 K. Historical infrared data reveal generally cooler dust color temperatures combined with long-term fading trends, but provide no discernible correlation between flux level and temperature. Investigating the most mid-infrared variable R Cor Bor stars found in IRAS, AKARI, and WISE data reveals similar fading trends, bursts that can show a factor of up to 10 change in flux density between epochs, and blackbody-fit dust color temperatures that span 400-1300 K. While some R Cor Bor stars such as IRAS 00450+7401 appear to undergo fade/burst cycles in the mid-infrared, significant gaps in temporal coverage prevent conclusively identifying any preferred timescale for their mid-infrared variability and circumstellar dust temperature changes.
  •  
10.
  • Hacar, A., et al. (författare)
  • Initial Conditions for Star Formation: a Physical Description of the Filamentary ISM
  • 2023
  • Ingår i: ASP Conference Series. ; 534, s. 153-
  • Konferensbidrag (refereegranskat)abstract
    • The interstellar medium (ISM) contains filamentary structure over a wide range of scales. Understanding the role of this structure, both as a conduit of gas across the scales and a diagnostic tool of local physics, is a major focus of star formation studies. We review recent progress in studying filamentary structure in the ISM, interpreting its properties in terms of physical processes, and exploring formation and evolution scenarios. We include structures from galactic-scale filaments to tenth-of-a-parsec scale filaments, comprising both molecular and atomic structures, from both observational and theoretical perspectives. In addition to the literature overview, we assemble a large amount of catalog data from different surveys and provide the most comprehensive census of filamentary structures to date. Our census consists of 22 803 filamentary structures, facilitating a holistic perspective and new insights. We use our census to conduct a meta-analysis, leading to a description of filament properties over four orders of magnitudes in length and eight in mass. Our analysis emphasize the hierarchical and dynamical nature of filamentary structures. Filaments do not live in isolation, nor they generally resemble static structures close to equilibrium. We propose that accretion during filament formation and evolution sets some of the key scaling properties of filaments. This highlights the role of accretion during filament formation and evolution and also in setting the initial conditions for star formation. Overall, the study of filamentary structures during the past decade has been observationally driven. While great progress has been made on measuring the basic properties of filaments, our understanding of their formation and evolution is clearly lacking. In this context, we identify a number of directions and questions we consider most pressing for the field.
  •  
11.
  • Hopkins, P. F., et al. (författare)
  • Dust in the wind with resonant drag instabilities - I. The dynamics of dust-driven outflows in GMCs and H II regions
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 517:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation-dust driven outflows, where radiation pressure on dust grains accelerates gas, occur in many astrophysical environments. Almost all previous numerical studies of these systems have assumed that the dust was perfectly coupled to the gas. However, it has recently been shown that the dust in these systems is unstable to a large class of 'resonant drag instabilities' (RDIs) which de-couple the dust and gas dynamics and could qualitatively change the non-linear outcome of these outflows. We present the first simulations of radiation-dust driven outflows in stratified, inhomogeneous media, including explicit grain dynamics and a realistic spectrum of grain sizes and charge, magnetic fields and Lorentz forces on grains (which dramatically enhance the RDIs), Coulomb and Epstein drag forces, and explicit radiation transport allowing for different grain absorption and scattering properties. In this paper, we consider conditions resembling giant molecular clouds (GMCs), H II regions, and distributed starbursts, where optical depths are modest (≲1), single-scattering effects dominate radiation-dust coupling, Lorentz forces dominate over drag on grains, and the fastest-growing RDIs are similar, such as magnetosonic and fast-gyro RDIs. These RDIs generically produce strong size-dependent dust clustering, growing non-linear on time-scales that are much shorter than the characteristic times of the outflow. The instabilities produce filamentary and plume-like or 'horsehead' nebular morphologies that are remarkably similar to observed dust structures in GMCs and H II regions. Additionally, in some cases they strongly alter the magnetic field structure and topology relative to filaments. Despite driving strong micro-scale dust clumping which leaves some gas 'behind,' an order-unity fraction of the gas is always efficiently entrained by dust.
  •  
12.
  • Hopkins, P. F., et al. (författare)
  • First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 516:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV-TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-magnetohydrodynamics galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighbourhood [Local interstellar medium (LISM)] observations (spectra, B/C, e+/e-, p¯/p, 10Be/9Be, ionization, and γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circumgalactic medium in realistic galaxies necessarily imposes an ∼10 kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by ∼0.1−1 kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov-Taylor stages of SNe remnants.
  •  
13.
  • Hovatta, T., et al. (författare)
  • Optical polarization of high-energy BL Lacertae objects
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : EDP Sciences. - 0035-8711 .- 1365-2966. ; 596
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We investigate the optical polarization properties of high-energy BL Lac objects using data from the RoboPol blazar monitoring program and the Nordic Optical Telescope. Aims: We wish to understand if there are differences between the BL Lac objects that have been detected with the current-generation TeV instruments and those objects that have not yet been detected. Methods: We used a maximum-likelihood method to investigate the optical polarization fraction and its variability in these sources. In order to study the polarization position angle variability, we calculated the time derivative of the electric vector position angle (EVPA) change. We also studied the spread in the Stokes Q/I-U/I plane and rotations in the polarization plane. Results: The mean polarization fraction of the TeV-detected BL Lacs is 5%, while the non-TeV sources show a higher mean polarization fraction of 7%. This difference in polarization fraction disappears when the dilution by the unpolarized light of the host galaxy is accounted for. The TeV sources show somewhat lower fractional polarization variability amplitudes than the non-TeV sources. Also the fraction of sources with a smaller spread in the Q/I-U/I plane and a clumped distribution of points away from the origin, possibly indicating a preferred polarization angle, is larger in the TeV than in the non-TeV sources. These differences between TeV and non-TeV samples seem to arise from differences between intermediate and high spectral peaking sources instead of the TeV detection. When the EVPA variations are studied, the rate of EVPA change is similar in both samples. We detect significant EVPA rotations in both TeV and non-TeV sources, showing that rotations can occur in high spectral peaking BL Lac objects when the monitoring cadence is dense enough. Our simulations show that we cannot exclude a random walk origin for these rotations. Conclusions: These results indicate that there are no intrinsic differences in the polarization properties of the TeV-detected and non-TeV-detected high-energy BL Lac objects. This suggests that the polarization properties are not directly related to the TeV-detection, but instead the TeV loudness is connected to the general flaring activity, redshift, and the synchrotron peak location.
  •  
14.
  • Kiehlmann, S., et al. (författare)
  • The time-dependent distribution of optical polarization angle changes in blazars
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:1, s. 225-243
  • Tidskriftsartikel (refereegranskat)abstract
    • At optical wavelengths, blazar Electric Vector Position Angle (EVPA) rotations linked with gamma-ray activity have been the subject of intense interest and systematic investigation for over a decade. One difficulty in the interpretation of EVPA rotations is the inherent 180° ambiguity in the measurements. It is therefore essential, when studying EVPA rotations, to ensure that the typical time-interval between successive observations - i.e. the cadence - is short enough to ensure that the correct modulo 180° value is selected. This optimal cadence depends on the maximum intrinsic EVPA rotation speed in blazars, which is currently not known. In this paper, we address the following questions for the RoboPol sample: What range of rotation speeds for rotations greater than 90° can we expect? What observation cadence is required to detect such rotations? Have rapid rotations been missed in EVPA rotation studies thus far? What fraction of data is affected by the ambiguity? And how likely are detected rotations affected by the ambiguity? We answer these questions with three seasons of optical polarimetric observations of a statistical sample of blazars sampled weekly with the RoboPol instrument and an additional season with daily observations. We model the distribution of EVPA changes on time-scales from 1-30 d and estimate the fraction of changes exceeding 90°. We show that at least daily observations are necessary to measure >96 per cent of optical EVPA variability in the RoboPol sample of blazars correctly and that intraday observations are needed to measure the fastest rotations that have been seen thus far.
  •  
15.
  • Maharana, S., et al. (författare)
  • Bright-Moon sky as a wide-field linear Polarimetric flat source for calibration
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Next-generation wide-field optical polarimeters such as Wide-Area Linear Optical Polarimeters (WALOPs) have a field of view (FoV) of tens of arcminutes. Wide-field polarimetric flat sources are essential to the efficient and accurate calibration of these instruments. However, no established wide-field polarimetric standard or flat sources exist at present. Aims. This study tests the feasibility of using the polarized sky patches of the size of around 10 × 10 arcminutes2, at a distance of up to 20 from the Moon, on bright-Moon nights as a wide-field linear polarimetric flat source. Methods. We observed 19 patches of the sky adjacent to the bright-Moon with the RoboPol instrument in the SDSS-r broadband filter. These patches were observed on five nights within two days of the full-Moon across two RoboPol observing seasons. Results. We find that for 18 of the 19 patches, the uniformity in the measured normalized Stokes parameters q and u is within 0.2%, with 12 patches exhibiting uniformity within 0.07% or better for both q and u simultaneously, making them reliable and stable wide-field linear polarization flats. Conclusions. We demonstrate that the sky on bright-Moon nights is an excellent wide-field linear polarization flat source. Various combinations of the normalized Stokes parameters q and u can be obtained by choosing suitable locations of the sky patch with respect to the Moon.
  •  
16.
  • Maharana, Siddharth, et al. (författare)
  • WALOP-South: a four-camera one-shot imaging polarimeter for PASIPHAE survey. Paper II - polarimetric modeling and calibration
  • 2022
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Wide-Area Linear Optical Polarimeter (WALOP)-South instrument is an upcoming wide-field and high accuracy optical polarimeter to be used as a survey instrument for carrying out the Polar-Areas Stellar Imaging in Polarization High-Accuracy Experiment program. Designed to operate as a one-shot four-channel and four-camera imaging polarimeter, it will have a field of view of 35 × 35 arcminutes and will measure the Stokes parameters I, q, and u in a single exposure in the Sloan Digital Sky Survey-r broadband filter. The design goal for the instrument is to achieve an overall polarimetric measurement accuracy of 0.1% over the entire field of view. We present here the complete polarimetric modeling of the instrument, characterizing the amount and sources of instrumental polarization. To accurately retrieve the real Stokes parameters of a source from the measured values, we have developed a calibration method for the instrument. Using this calibration method and simulated data, we demonstrate how to correct for instrumental polarization and obtain 0.1% accuracy in degree of polarization, p. In addition, we tested and validated the calibration method by implementing it on a table-top WALOP like test-bed polarimeter in the laboratory.
  •  
17.
  • Maharana, Siddharth, et al. (författare)
  • WALOP-South: a four-camera one-shot imaging polarimeter for PASIPHAE survey. Paper I—optical design
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Wide-Area Linear Optical Polarimeter (WALOP)-South instrument will be mounted on the 1-m South African Astronomical Observatory telescope in South Africa as part of the Polar-Areas Stellar Imaging Polarization High Accuracy Experiment (PASIPHAE) program to carry out a linear imaging polarization survey of the Galactic polar regions in the optical band. Designed to achieve polarimetric sensitivity of 0.05% across a 35 × 35 arc min field of view (FOV), it will be capable of measuring the Stokes parameters I, q, and u in a single exposure in the R broadband and narrowband filters between 0.5 to 0.7 μm. For each measurement, four images of the full field corresponding to linear polarization angles of 0 deg, 45 deg, 90 deg, and 135 deg in the instrument coordinate system will be created on four detectors from which the Stokes parameters can be found using differential photometry. In designing the optical system, major challenges included correcting for the dispersion introduced by large split angle Wollaston prisms used as analysers and other aberrations from the entire field to obtain imaging quality point spread function (PSF) at the detector. We present the optical design of the WALOP-South instrument which overcomes these challenges and delivers near seeing limited PSFs for the entire FOV.
  •  
18.
  • Mandarakas, N., et al. (författare)
  • Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry. Demonstration of the technique
  • 2019
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The third Fermi-LAT catalog (3FGL) presented the data of the first four years of observations from the Fermi Gamma-ray Space Telescope mission. There are 3034 sources, 1010 of which still remain unidentified. Identifying and classifying γ-ray emitters is of high significance with regard to studying high-energy astrophysics. Aims: We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified γ-ray sources (UGSs). Methods: Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ uncertainties of four unidentified 3FGL sources. Results: We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z = 0.0609 ± 0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN. Conclusions: We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high Galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified γ-ray sources.
  •  
19.
  • Mandarakas, N., et al. (författare)
  • Zero-polarization candidate regions for the calibration of wide-field optical polarimeters
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The calibration of optical polarimeters relies on the use of stars with negligible polarization (i.e., unpolarized standard stars) for determining the instrumental polarization zero point. For wide-field polarimeters, calibration is often done by imaging the same star over multiple positions in the field of view (FoV), which is a time-consuming process. A more effective technique is to target fields containing multiple standard stars. While this method has been used for fields with highly polarized stars, there are no such sky regions with well measured unpolarized standard stars. Aims. We aim to identify sky regions with tens of stars exhibiting negligible polarization that are suitable for a zero-point calibration of wide-field polarimeters. Methods. We selected stars in regions with extremely low reddening, located at high Galactic latitudes. We targeted four ∼40′ × 40′ fields in the northern and eight in the southern equatorial hemispheres. Observations were carried out at the Skinakas Observatory and the South African Astronomical Observatory. Results. We found two fields in the north and seven in the south characterized by a mean polarization lower than p < 0.1%. Conclusions. At least 9 out of the 12 fields can be used for a zero-point calibration of wide-field polarimeters.
  •  
20.
  • Middei, Ricardo, et al. (författare)
  • X-Ray Polarization Observations of BL Lacertae
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 942
  • Tidskriftsartikel (refereegranskat)abstract
    • Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus that the synchrotron emission is responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae (BL Lac) performed with the Imaging X-ray Polarimetry Explorer, from which an upper limit to the polarization degree Π X < 12.6% was found in the 2-8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton-synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.
  •  
21.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • A closer look at the `characteristic' width of molecular cloud filaments
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 466:3, s. 2529-2541
  • Tidskriftsartikel (refereegranskat)abstract
    • Filaments in Herschel molecular cloud images are found to exhibit a 'characteristic width'. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy is a result of the methodology adopted for measuring filament widths. First, we perform the previously used analysis technique on artificial scale-free data, and obtain a peaked width distribution of filament-like structures. Next, we repeat the analysis on three Herschel maps and reproduce the narrow distribution of widths found in previous studies - when considering the average width of each filament. However, the distribution of widths measured at all points along a filament spine is broader than the distribution of mean filament widths, indicating that the narrow spread (interpreted as a 'characteristic' width) results from averaging. Furthermore, the width is found to vary significantly from one end of a filament to the other. Therefore, the previously identified peak at 0.1 pc cannot be understood as representing the typical width of filaments. We find an alternative explanation by modelling the observed width distribution as a truncated power-law distribution, sampled with uncertainties. The position of the peak is connected to the lower truncation scale and is likely set by the choice of parameters used in measuring filament widths. We conclude that a 'characteristic' width of filaments is not supported by the available data.
  •  
22.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • Demonstration of Magnetic Field Tomography with Starlight Polarization toward a Diffuse Sightline of the ISM
  • 2019
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X.
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of large data sets with stellar distance and polarization information will enable a tomographic reconstruction of the (plane-of-the-sky-projected) interstellar magnetic field in the near future. We demonstrate the feasibility of such a decomposition within a small region of the diffuse interstellar medium (ISM). We combine measurements of starlight (R-band) linear polarization obtained using the RoboPol polarimeter with stellar distances from the second Gaia data release. The stellar sample is brighter than 17 mag in the R-band and reaches out to several kiloparsecs from the Sun. H I emission spectra reveal the existence of two distinct clouds along the line of sight. We decompose the line-of-sight-integrated stellar polarizations to obtain the mean polarization properties of the two clouds. The two clouds exhibit significant differences in terms of column density and polarization properties. Their mean plane-of-the-sky magnetic field orientation differs by 60°. We show how our tomographic decomposition can be used to constrain our estimates of the polarizing efficiency of the clouds as well as the frequency dependence of the polarization angle of polarized dust emission. We also demonstrate a new method to constrain cloud distances based on this decomposition. Our results represent a preview of the wealth of information that can be obtained from a tomographic map of the ISM magnetic field.
  •  
23.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • Extreme starlight polarization in a region with highly polarized dust emission
  • 2019
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Galactic dust emission is polarized at unexpectedly high levels, as revealed by Planck. Aims: The origin of the observed ≃20% polarization fractions can be identified by characterizing the properties of optical starlight polarization in a region with maximally polarized dust emission. Methods: We measure the R-band linear polarization of 22 stars in a region with a submillimeter polarization fraction of ≃20%. A subset of 6 stars is also measured in the B, V, and I bands to investigate the wavelength dependence of polarization. Results: We find that starlight is polarized at correspondingly high levels. Through multiband polarimetry we find that the high polarization fractions are unlikely to arise from unusual dust properties, such as enhanced grain alignment. Instead, a favorable magnetic field geometry is the most likely explanation, and is supported by observational probes of the magnetic field morphology. The observed starlight polarization exceeds the classical upper limit of [pV/E(B-V)]max = 9% mag-1 and is at least as high as 13% mag-1, as inferred from a joint analysis of Planck data, starlight polarization, and reddening measurements. Thus, we confirm that the intrinsic polarizing ability of dust grains at optical wavelengths has long been underestimated.
  •  
24.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • Maps of the Number of H I Clouds along the Line of Sight at High Galactic Latitude
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 902:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing the structure of the Galactic interstellar medium (ISM) in three dimensions is of high importance for accurate modeling of dust emission as a foreground to the cosmic microwave background (CMB). At high Galactic latitude, where the total dust content is low, accurate maps of the 3D structure of the ISM are lacking. We develop a method to quantify the complexity of the distribution of dust along the line of sight with the use of H I line emission. The method relies on a Gaussian decomposition of the H I spectra to disentangle the emission from overlapping components in velocity. We use this information to create maps of the number of clouds along the line of sight. We apply the method to (a) the high Galactic latitude sky and (b) the region targeted by the BICEP/Keck experiment. In the north Galactic cap we find on average three clouds per 0.2 square degree pixel, while in the south the number falls to 2.5. The statistics of the number of clouds are affected by intermediate-velocity clouds (IVCs), primarily in the north. IVCs produce detectable features in the dust emission measured by Planck. We investigate the complexity of H I spectra in the BICEP/Keck region and find evidence for the existence of multiple components along the line of sight. The data (doi: 10.7910/DVN/8DA5LH) and software are made publicly available and can be used to inform CMB foreground modeling and 3D dust mapping.
  •  
25.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • Optical polarization map of the Polaris Flare with RoboPol
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:1, s. 715-726
  • Tidskriftsartikel (refereegranskat)abstract
    • The stages before the formation of stars in molecular clouds are poorly understood. Insights can be gained by studying the properties of quiescent clouds, such as their magnetic field structure. The plane-of-the-sky orientation of the field can be traced by polarized starlight. We present the first extended, wide-field (∼10 deg2) map of the Polaris Flare cloud in dust-absorption induced optical polarization of background stars, using the Robotic Polarimeter (RoboPol) polarimeter at the Skinakas Observatory. This is the first application of the wide-field imaging capabilities of RoboPol. The data were taken in the R band and analysed with the automated reduction pipeline of the instrument. We present in detail optimizations in the reduction pipeline specific to wide-field observations. Our analysis resulted in reliable measurements of 641 stars with median fractional linear polarization 1.3 per cent. The projected magnetic field shows a large-scale ordered pattern. At high longitudes it appears to align with faint striations seen in the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) map of dust emission (250 μm), while in the central 4-5 deg2 it shows an eddy-like feature. The overall polarization pattern we obtain is in good agreement with large-scale measurements by Planck of the dust emission polarization in the same area of the sky.
  •  
26.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • Revisiting the Distance to Radio Loops I and IV Using Gaia and Radio/Optical Polarization Data
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 922:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Galactic synchrotron emission exhibits large angular scale features known as radio spurs and loops. Determining the physical size of these structures is important for understanding the local interstellar structure and for modeling the Galactic magnetic field. However, the distance to these structures is either under debate or entirely unknown. We revisit a classical method of finding the location of radio spurs by comparing optical polarization angles with those of synchrotron emission as a function of distance. We consider three tracers of the magnetic field: stellar polarization, polarized synchrotron radio emission, and polarized thermal dust emission. We employ archival measurements of optical starlight polarization and Gaia distances and construct a new map of polarized synchrotron emission from WMAP and Planck data. We confirm that synchrotron, dust emission, and stellar polarization angles all show a statistically significant alignment at high Galactic latitude. We obtain distance limits to three regions toward Loop I of 112 ± 17 pc, 135 ± 20 pc, and <105 pc. Our results strongly suggest that the polarized synchrotron emission toward the North Polar Spur at b > 30° is local. This is consistent with the conclusions of earlier work based on stellar polarization and extinction, but in stark contrast with the Galactic center origin recently revisited on the basis of X-ray data. We also obtain a distance measurement toward part of Loop IV (180 ± 15 pc) and find evidence that its synchrotron emission arises from chance overlap of structures located at different distances. Future optical polarization surveys will allow the expansion of this analysis to other radio spurs.
  •  
27.
  • Panopoulou, Georgia, 1989, et al. (författare)
  • The magnetic field and dust filaments in the Polaris Flare
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:2, s. 1517-1529
  • Tidskriftsartikel (refereegranskat)abstract
    • In diffuse molecular clouds, possible precursors of star-forming clouds, the effect of the magnetic field is unclear. In this work, we compare the orientations of filamentary structures in the Polaris Flare, as seen through dust emission by Herschel, to the plane-of-the-sky magnetic field orientation (Bpos) as revealed by stellar optical polarimetry with RoboPol. Dust structures in this translucent cloud show a strong preference for alignment with Bpos. Of the field orientations, 70 per cent are consistent with those of the filaments (within 30°). We explore the spatial variation of the relative orientations and find it to be uncorrelated with the dust emission intensity and correlated to the dispersion of polarization angles. Concentrating on the area around the highest column density filament, and on the region with the most uniform field, we infer the Bpos strength to be 24-120 μG. Assuming that the magnetic field can be decomposed into a turbulent and an ordered component, we find a turbulent-to-ordered ratio of 0.2-0.8, implying that the magnetic field is dynamically important, at least in these two areas. We discuss implications for three-dimensional field properties, as well as for the distance estimate of the cloud.
  •  
28.
  • Paranjpye, Dhruv, et al. (författare)
  • Eliminating artefacts in polarimetric images using deep learning
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarization measurements done using Imaging Polarimeters such as the Robotic Polarimeter are very sensitive to the presence of artefacts in images. Artefacts can range from internal reflections in a telescope to satellite trails that could contaminate an area of interest in the image. With the advent of wide-field polarimetry surveys, it is imperative to develop methods that automatically flag artefacts in images. In this paper, we implement a Convolutional Neural Network to identify the most dominant artefacts in the images. We find that our model can successfully classify sources with 98 per cent true positive and 97 per cent true negative rates. Such models, combined with transfer learning, will give us a running start in artefact elimination for near-future surveys like WALOP.
  •  
29.
  • Pavlidou, Vasiliki, et al. (författare)
  • The RoboPol optical polarization survey of gamma-ray-loud blazars
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 463:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results from RoboPol, a novel-design optical polarimeter operating at the Skinakas Observatory in Crete. The data, taken during the 2013 May-June commissioning of the instrument, constitute a single-epoch linear polarization survey of a sample of gamma-ray-loud blazars, defined according to unbiased and objective selection criteria, easily reproducible in simulations, as well as a comparison sample of, otherwise similar, gamma-ray-quiet blazars. As such, the results of this survey are appropriate for both phenomenological population studies and for tests of theoretical population models. We have measured polarization fractions as low as 0.015 down to R-mag of 17 and as low as 0.035 down to 18 mag. The hypothesis that the polarization fractions of gamma-ray-loud and gamma-ray-quiet blazars are drawn from the same distribution is rejected at the 3σ level. We therefore conclude that gamma-ray-loud and gamma-ray-quiet sources have different optical polarization properties. This is the first time this statistical difference is demonstrated in optical wavelengths. The polarization fraction distributions of both samples are well described by exponential distributions with averages of < p > =6.4 ^{+0.9}_{-0.8}× 10^{-2} for gamma-ray-loud blazars, and < p > =3.2 ^{+2.0}_{-1.1}× 10^{-2} for gamma-ray-quiet blazars. The most probable value for the difference of the means is 3.4^{+1.5}_{-2.0}× 10^{-2}. The distribution of polarization angles is statistically consistent with being uniform.
  •  
30.
  • Pelgrims, Vincent, et al. (författare)
  • Evidence for line-of-sight frequency decorrelation of polarized dust emission in Planck data
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • If a single line of sight (LOS) intercepts multiple dust clouds with different spectral energy distributions and magnetic field orientations, then the frequency scaling of each of the Stokes Q and U parameters of the thermal dust emission may be different, a phenomenon we refer to as LOS frequency decorrelation. We present first evidence for LOS frequency decorrelation in Planck data using independent measurements of neutral-hydrogen (HI) emission to probe the 3D structure of the magnetized interstellar medium (ISM). We use HI-based measurements of the number of clouds per LOS and the magnetic field orientation in each cloud to select two sets of sightlines: (i) a target sample of pixels that are likely to exhibit LOS frequency decorrelation and (ii) a control sample of pixels that lack complex LOS structure. We test the null hypothesis that LOS frequency decorrelation is not detectable in Planck 353 and 217 GHz polarization data at high Galactic latitudes. We reject the null hypothesis at high significance based on data that show that the combined effect of polarization angle variation with frequency and depolarization are detected in the target sample. This detection is robust against the choice of cosmic microwave background (CMB) map and map-making pipeline. The observed change in polarization angle due to LOS frequency decorrelation is detectable above the Planck noise level. The probability that the detected effect is due to noise alone ranges from 5 × 10-2 to 4 × 10-7, depending on the CMB subtraction algorithm and treatment of residual systematic errors; correcting for residual systematic errors consistently increases the significance of the effect. Within the target sample, the LOS decorrelation effect is stronger for sightlines with more misaligned magnetic fields, as expected. With our sample, we estimate that an intrinsic variation of ~15% in the ratio of 353 to 217 GHz polarized emission between clouds is sufficient to reproduce the measured effect. Our finding underlines the importance of ongoing studies to map the three-dimensional structure of the magnetized and dusty ISM that could ultimately help component separation methods to account for frequency decorrelation effects in CMB polarization studies.
  •  
31.
  • Pelgrims, Vincent, et al. (författare)
  • Starlight-polarization-based tomography of the magnetized ISM: PASIPHAE's line-of-sight inversion method
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Bayesian method for tomographic decomposition of the plane-of-sky orientation of the magnetic field with the use of stellar polarimetry and distance. This standalone tomographic inversion method presents an important step forward in reconstructing the magnetized interstellar medium (ISM) in three dimensions within dusty regions. We develop a model in which the polarization signal from the magnetized and dusty ISM is described by thin layers at various distances, a working assumption which should be satisfied in small-angular circular apertures. Our modeling makes it possible to infer the mean polarization (amplitude and orientation) induced by individual dusty clouds and to account for the turbulence-induced scatter in a generic way. We present a likelihood function that explicitly accounts for uncertainties in polarization and parallax. We develop a framework for reconstructing the magnetized ISM through the maximization of the log-likelihood using a nested sampling method. We test our Bayesian inversion method on mock data, representative of the high Galactic latitude sky, taking into account realistic uncertainties from Gaia and as expected for the optical polarization survey PASIPHAE according to the currently planned observing strategy. We demonstrate that our method is effective at recovering the cloud properties as soon as the polarization induced by a cloud to its background stars is higher than ~0.1% for the adopted survey exposure time and level of systematic uncertainty. The larger the induced polarization is, the better the method's performance, and the lower the number of required stars. Our method makes it possible to recover not only the mean polarization properties but also to characterize the intrinsic scatter, thus creating new ways to characterize ISM turbulence and the magnetic field strength. Finally, we apply our method to an existing data set of starlight polarization with known line-of-sight decomposition, demonstrating agreement with previous results and an improved quantification of uncertainties in cloud properties.
  •  
32.
  • Pelgrims, V., et al. (författare)
  • The first degree-scale starlight-polarization-based tomography map of the magnetized interstellar medium
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first degree-scale tomography map of the dusty magnetized interstellar medium (ISM) from stellar polarimetry and distance measurements. We used the RoboPol polarimeter at Skinakas Observatory to conduct a survey of the polarization of starlight in a region of the sky of about four square degrees. We propose a Bayesian method to decompose the stellar-polarization source field along the distance to invert the three-dimensional (3D) volume occupied by the observed stars. We used this method to obtain the first 3D map of the dusty magnetized ISM. Specifically, we produced a tomography map of the orientation of the plane-of-sky component of the magnetic field threading the diffuse, dusty regions responsible for the stellar polarization. For the targeted region centered on Galactic coordinates (l, b) (103.3, 22.3), we identified several ISM clouds. Most of the lines of sight intersect more than one cloud. A very nearby component was detected in the foreground of a dominant component from which most of the polarization signal comes and which we identified as being an intersection of the wall of the Local Bubble and the Cepheus Flare. Farther clouds, with a distance of up to 2 kpc, were similarly detected. Some of them likely correspond to intermediate-velocity clouds seen in H I spectra in this region of the sky. We found that the orientation of the plane-of-sky component of the magnetic field changes along distance for most of the lines of sight. Our study demonstrates that starlight polarization data coupled to distance measures have the power to reveal the great complexity of the dusty magnetized ISM in 3D and, in particular, to provide local measurements of the plane-of-sky component of the magnetic field in dusty regions. This demonstrates that the inversion of large data volumes, as expected from the PASIPHAE survey, will provide the necessary means to move forward in the modeling of the Galactic magnetic field and of the dusty magnetized ISM as a contaminant in observations of the cosmic microwave background polarization.
  •  
33.
  • Ponnada, Sam B., et al. (författare)
  • Synchrotron emission on FIRE: Equipartition estimators of magnetic fields in simulated galaxies with spectrally resolved cosmic rays
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:4, s. 11707-11718
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchrotron emission is one of few observable tracers of galactic magnetic fields (B) and cosmic rays (CRs). Much of our understanding of B in galaxies comes from utilizing synchrotron observations in conjunction with several simplifying assumptions of equipartition models, however, it remains unclear how well these assumptions hold, and what B these estimates physically represent. Using Feedback in Realistic Environments project simulations which self-consistently evolve CR proton, electron, and positron spectra from MeV to TeV energies, we present the first synthetic synchrotron emission predictions from simulated L∗ galaxies with 'live' spectrally resolved CR-magnetohydrodynamic. We find that synchrotron emission can be dominated by relatively cool and dense gas, resulting in equipartition estimates of B with fiducial assumptions underestimating the 'true' B in the gas that contributes the most emission by factors of 2-3 due to small volume-filling factors. Motivated by our results, we present an analytical framework that expands upon equipartition models for estimating B in a multiphase medium. Comparing our spectrally resolved synchrotron predictions to simpler spectral assumptions used in galaxy simulations with CRs, we find that spectral evolution can be crucial for accurate synchrotron calculations towards galactic centres, where loss terms are large.
  •  
34.
  • Ponnada, Sam, et al. (författare)
  • Magnetic fields on FIRE: Comparing B-fields in the multiphase ISM and CGM of simulated L* galaxies to observations
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 516
  • Tidskriftsartikel (refereegranskat)abstract
    • The physics of magnetic fields (B) and cosmic rays (CRs) have recently been included in simulations of galaxy formation. However, significant uncertainties remain in how these components affect galaxy evolution. To understand their common observational tracers, we analyse the magnetic fields in a set of high-resolution, magnetohydrodynamic, cosmological simulations of Milky-Way-like galaxies from the FIRE-2 project. We compare mock observables of magnetic field tracers for simulations with and without CRs to observations of Zeeman splitting and rotation/dispersion measures. We find reasonable agreement between simulations and observations in both the neutral and the ionized interstellar medium (ISM). We find that the simulated galaxies with CRs show weaker ISM |B| fields on average compared to their magnetic-field-only counterparts. This is a manifestation of the effects of CRs in the diffuse, low density inner circumgalactic medium (CGM). We find that equipartition between magnetic and cosmic ray energy densities may be valid at large (> 1 kpc) scales for typical ISM densities of Milky-Way-like galaxies, but not in their haloes. Within the ISM, the magnetic fields in our simulated galaxies follow a power-law scaling with gas density. The scaling extends down to neutral hydrogen number densities < 300 cm-3, in contrast to observationally derived models, but consistent with the observational measurements. Finally, we generate synthetic rotation measure (RM) profiles for projections of the simulated galaxies and compare to observational constraints in the CGM. While consistent with upper limits, improved data are needed to detect the predicted CGM RMs at 10-200 kpc and better constrain theoretical predictions.
  •  
35.
  • Puglisi, G., et al. (författare)
  • Improved galactic foreground removal for B-mode detection with clustering methods
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:2, s. 2052-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing the sub-mm Galactic emission has become increasingly critical especially in identifying and removing its polarized contribution from the one emitted by the cosmic microwave background (CMB). In this work, we present a parametric foreground removal performed on to sub-patches identified in the celestial sphere by means of spectral clustering. Our approach takes into account efficiently both the geometrical affinity and the similarity induced by the measurements and the accompanying errors. The optimal partition is then used to parametrically separate the Galactic emission encoding thermal dust and synchrotron from the CMB one applied on two nominal observations of forthcoming experiments from the ground and from the space. Moreover, the clustering is performed on tracers that are different from the data used for component separation, e.g. the spectral index maps of dust and synchrotron. Performing the parametric fit singularly on each of the clustering derived regions results in an overall improvement: both controlling the bias and the uncertainties in the CMB B-mode recovered maps. We finally apply this technique using the map of the number of clouds along the line of sight, Nc, as estimated from H I emission data and perform parametric fitting on to patches derived by clustering on this map. We show that adopting the Nc map as a tracer for the patches related to the thermal dust emission, results in reducing the B-mode residuals post-component separation. The code is made publicly available https://github.com/giuspugl/fgcluster.
  •  
36.
  • Ramaprakash, A. N., et al. (författare)
  • RoboPol: a four-channel optical imaging polarimeter
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966.
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design and performance of RoboPol, a four-channel optical polarimeter operating at the Skinakas Observatory in Crete, Greece. RoboPol is capable of measuring both relative linear Stokes parameters q and u (and the total intensity I) in one sky exposure. Though primarily used to measure the polarization of point sources in the R band, the instrument features additional filters (B, V, and I), enabling multiwavelength imaging polarimetry over a large field of view (13.6' × 13.6'). We demonstrate the accuracy and stability of the instrument throughout its 5 yr of operation. Best performance is achieved within the central region of the field of view and in the R band. For such measurements the systematic uncertainty is below 0.1 per cent in fractional linear polarization, p (0.05 per cent maximum likelihood). Throughout all observing seasons the instrumental polarization varies within 0.1 per cent in p and within ∼1° in polarization angle.
  •  
37.
  • Shull, J. Michael, et al. (författare)
  • Variations of Interstellar Gas-to-dust Ratios at High Galactic Latitudes
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 961:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interstellar dust at high Galactic latitudes can influence astronomical foreground subtraction, produce diffuse scattered light, and soften the UV spectra of quasars. In a sample of 94 sight lines toward quasars at high latitude and low extinction, we evaluate the interstellar “gas-to-dust ratio” N H/E(B − V), using hydrogen column densities (H i and H2) and far-IR (FIR) estimates of dust reddening. In the Galactic plane, this ratio is 6.0 ± 0.2 (in units of 1021 cm−2 mag−1). On average, recent Planck estimates of E(B − V) in low-reddening sight lines are 12% higher than those from Schlafly & Finkbeiner, and N H I exhibits significant variations when measured at different radio telescopes. In a sample of 51 quasars with measurements of both H i and H2 and 0.01 ≤ E(B − V) ≲ 0.1, we find mean ratios 10.3 ± 0.4 (gas at all velocities) and 9.2 ± 0.3 (low-velocity only) using Planck E(B − V) data. High-latitude H2 fractions are generally small (2%-3% on average), although nine of 39 sight lines at ∣b∣ ≥ 40° have f H2 of 1%-17%. Because FIR-inferred E(B − V) is sensitive to modeled dust temperature T d and emissivity index β, gas-to-dust ratios have large, asymmetric errors at low E(B − V). The ratios are elevated in sight lines with high-velocity clouds, which contribute N H but little reddening. In Complex C, the ratio decreases by 40% when high-velocity gas is excluded. Decreases in dust content are expected in low-metallicity gas above the Galactic plane, resulting from grain destruction in shocks, settling to the disk, and thermal sputtering in hot halo gas.
  •  
38.
  • Skalidis, Raphael, et al. (författare)
  • CO enhancement by magnetohydrodynamic waves. Striations in the Polaris Flare
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The formation of molecular gas in interstellar clouds is a slow process, but can be enhanced by gas compression. Magneto-hydrodynamic (MHD) waves can create compressed quasi-periodic linear structures, referred to as striations. Striations are observed at the column densities at which the transition from atomic to molecular gas takes place. Aims: We explore the role of MHD waves in the CO chemistry in regions with striations within molecular clouds. Methods: We targeted a region with striations in the Polaris Flare cloud. We conducted a CO J = 2−1 survey in order to probe the molecular gas properties. We used archival starlight polarization data and dust emission maps in order to probe the magnetic field properties and compare against the CO morphological and kinematic properties. We assessed the interaction of compressible MHD wave modes with CO chemistry by comparing their characteristic timescales. Results: The estimated magnetic field is 38-76 µG. In the CO integrated intensity map, we observe a dominant quasiperiodic intensity structure that tends to be parallel to the magnetic field orientation and has a wavelength of approximately one parsec. The periodicity axis is ~17° off from the mean magnetic field orientation and is also observed in the dust intensity map. The contrast in the CO integrated intensity map is ~2.4 times higher than the contrast of the column density map, indicating that CO formation is enhanced locally. We suggest that a dominant slow magnetosonic mode with an estimated period of 2.1-3.4 Myr and a propagation speed of 0.30-0.45 km s−1 is likely to have enhanced the formation of CO, hence created the observed periodic pattern. We also suggest that within uncertainties, a fast magnetosonic mode with a period of 0.48 Myr and a velocity of 2.0 km s−1 could have played some role in increasing the CO abundance. Conclusions: Quasiperiodic CO structures observed in striation regions may be the imprint of MHD wave modes. The Alfvénic speed sets the dynamical timescales of the compressible MHD modes and determines which wave modes are involved in the CO chemistry.
  •  
39.
  • Skalidis, Raphael, et al. (författare)
  • HI-H2 transition: Exploring the role of the magnetic field. A case study toward the Ursa Major cirrus
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 665
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Atomic gas in the diffuse interstellar medium (ISM) is organized in filamentary structures. These structures usually host cold and dense molecular clumps. The Galactic magnetic field is considered to play an important role in the formation of these clumps. Aims: Our goal is to explore the role of the magnetic field in the HI-H2 transition process. Methods: We targeted a diffuse ISM filamentary cloud toward the Ursa Major cirrus where gas transitions from atomic to molecular. We probed the magnetic field properties of the cloud with optical polarization observations. We performed multiwavelength spectroscopic observations of different species in order to probe the gas phase properties of the cloud. We observed the CO (J = 1−0) and (J = 2−1) lines in order to probe the molecular content of the cloud. We also obtained observations of the [C II] 157.6µm emission line in order to trace the CO-dark H2 gas and estimate the mean volume density of the cloud. Results: We identified two distinct subregions within the cloud. One of the regions is mostly atomic, while the other is dominated by molecular gas, although most of it is CO-dark. The estimated plane-of-the-sky magnetic field strength between the two regions remains constant within uncertainties and lies in the range 13-30 µG. The total magnetic field strength does not scale with density. This implies that gas is compressed along the field lines. We also found that turbulence is trans-Alfvénic, with MA ≈ 1. In the molecular region, we detected an asymmetric CO clump whose minor axis is closer, with a 24° deviation, to the mean magnetic field orientation than the angle of its major axis. The H I velocity gradients are in general perpendicular to the mean magnetic field orientation except for the region close to the CO clump, where they tend to become parallel. This phenomenon is likely related to gas undergoing gravitational infall. The magnetic field morphology of the target cloud is parallel to the H I column density structure of the cloud in the atomic region, while it tends to become perpendicular to the H I structure in the molecular region. On the other hand, the magnetic field morphology seems to form a smaller offset angle with the total column density shape (including both atomic and molecular gas) of this transition cloud. Conclusions: In the target cloud where the H I-H2 transition takes place, turbulence is trans-Alfvénic, and hence the magnetic field plays an important role in the cloud dynamics. Atomic gas probably accumulates preferentially along the magnetic field lines and creates overdensities where molecular gas can form. The magnetic field morphology is probed better by the total column density shape of the cloud, and not its H I column density shape.
  •  
40.
  • Skalidis, Raphael, et al. (författare)
  • Local measurements of the mean interstellar polarization at high Galactic latitudes
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : EDP Sciences. - 0035-8711 .- 1365-2966. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Very little information exists concerning the properties of the interstellar medium (ISM)-induced starlight polarization at high Galactic latitudes. Future optopolarimetric surveys promise to fill this gap. We conduct a small-scale pathfinding survey designed to identify the average polarization properties of the diffuse ISM locally, at regions with the lowest dust content. We perform deep optopolarimetric surveys within three 15'× 15' regions located at b > 48° using the RoboPol polarimeter. The observed samples of stars are photometrically complete to 16 mag in the R-band. The selected regions exhibit low total reddening compared to the majority of high-latitude sightlines. We measure the level of systematic uncertainty for all observing epochs and find it to be 0.1% in fractional linear polarization, p. The majority of individual stellar measurements have low signal-to-noise ratios. However, our survey strategy enables us to locate the mean fractional linear polarization pmean in each of the three regions. The region with lowest dust content yields pmean = (0.054 ± 0.038)%, not significantly different from zero. We find significant detections for the remaining two regions of: pmean = (0.113 ± 0.036)% and pmean = (0.208 ± 0.044)%. Using a Bayesian approach, we provide upper limits on the intrinsic spread of the small-scale distributions of q and u. At the detected pmean levels, the determination of the systematic uncertainty is critical for the reliability of the measurements. We verify the significance of our detections with statistical tests, accounting for all sources of uncertainty. Using publicly available HI emission data, we identify the velocity components that most likely account for the observed pmean and find their morphologies to be misaligned with the orientation of the mean polarization at a spatial resolution of 10'. We find indications that the standard upper envelope of p with reddening underestimates the maximum p at very low E(B-V) (≤0.01 mag).
  •  
41.
  • Tritsis, Aris, et al. (författare)
  • Magnetic field-gas density relation and observational implications revisited
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 451:4, s. 4384-4396
  • Tidskriftsartikel (refereegranskat)abstract
    • We revisit the relation between magnetic-field strength (B) and gas density (ρ) for contracting interstellar clouds and fragments (or, cores), which is central in observationally determining the dynamical importance of magnetic fields in cloud evolution and star formation. Recently, it has been claimed that a relation B ∝ ρ2/3 is statistically preferred over B ∝ ρ1/2 in molecular clouds, when magnetic-field detections and non-detections from Zeeman observations are combined. This finding has unique observational implications on cloud and core geometry: the relation B ∝ ρ2/3 can only be realized under spherical contraction. However, no indication of spherical geometry can be found for the objects used in the original statistical analysis of the B-ρ relation. We trace the origin of the inconsistency to simplifying assumptions in the statistical model used to arrive at the B ∝ ρ2/3 conclusion and to an underestimate of observational uncertainties in the determination of cloud and core densities. We show that, when these restrictive assumptions are relaxed, B ∝ ρ1/2 is the preferred relation for the (self-gravitating) molecular-cloud data, as theoretically predicted four decades ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy