SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Papa Ester) "

Sökning: WFRF:(Papa Ester)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhhatarai, Barun, et al. (författare)
  • CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals
  • 2011
  • Ingår i: Molecular Informatics. - : John Wiley & Sons. - 1868-1751 .- 1868-1743. ; 30:2-3, s. 189-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown.
  •  
2.
  • Brandmaier, Stefan, et al. (författare)
  • The QSPR-THESAURUS : The Online Platform of the CADASTER Project
  • 2014
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 42:1, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project. We overview the main features of the website, such as model upload, experimental design and hazard assessment to support risk assessment, and integration with other web tools, all of which are essential parts of the QSPR-THESAURUS.
  •  
3.
  • Cassani, Stefano, et al. (författare)
  • Evaluation of CADASTER QSAR Models for the Aquatic Toxicity of (Benzo)triazoles and Prioritisation by Consensus Prediction
  • 2013
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 41:1, s. 49-64
  • Tidskriftsartikel (refereegranskat)abstract
    • QSAR regression models of the toxicity of triazoles and benzotriazoles ([B] TAZs) to an alga (Pseudokirchneriella subcapitata), Daphnia magna and a fish (Onchorhynchus mykiss), were developed by five partners in the FP7-EU Project, CADASTER. The models were developed by different methods - Ordinary Least Squares (OLS), Partial Least Squares (PLS), Bayesian regularised regression and Associative Neural Network (ASNN) - by using various molecular descriptors (DRAGON, PaDEL-Descriptor and QSPR-THESAURUS web). In addition, different procedures were used for variable selection, validation and applicability domain inspection. The predictions of the models developed, as well as those obtained in a consensus approach by averaging the data predicted from each model, were compared with the results of experimental tests that were performed by two CADASTER partners. The individual and consensus models were able to correctly predict the toxicity classes of the chemicals tested in the CADASTER project, confirming the utility of the QSAR approach. The models were also used for the prediction of aquatic toxicity of over 300 (B)TAZs, many of which are included in the REACH pre-registration list, and were without experimental data. This highlights the importance of QSAR models for the screening and prioritisation of untested chemicals, in order to reduce and focus experimental testing.
  •  
4.
  • Chirico, Nicola, et al. (författare)
  • In silico approaches for the prediction of the breakthrough of organic contaminants in wastewater treatment plants
  • 2024
  • Ingår i: Environmental Science. - 2050-7887 .- 2050-7895. ; 26:2, s. 400-410
  • Tidskriftsartikel (refereegranskat)abstract
    • The removal efficiency (RE) of organic contaminants in wastewater treatment plants (WWTPs) is a major determinant of the environmental impact of chemicals which are discharged to wastewater. In a recent study, non-target screening analysis was applied to quantify the percentage removal efficiency (RE%) of more than 300 polar contaminants, by analyzing influent and effluent samples from a Swedish WWTP with direct injection UHPLC-Orbitrap-MS/MS. Based on subsets extracted from these data, we developed quantitative structure–property relationships (QSPRs) for the prediction of WWTP breakthrough (BT) to the effluent water. QSPRs were developed by means of multiple linear regression (MLR) and were selected after checking for overfitting and chance relationships by means of bootstrap and randomization procedures. A first model provided good fitting performance, showing that the proposed approach for the development of QSPRs for the prediction of BT is reasonable. By further populating the dataset with similar chemicals using a Tanimoto index approach based on substructure count fingerprints, a second QSPR indicated that the prediction of BT is also applicable to new chemicals sufficiently similar to the training set. Finally, a class-specific QSPR for PEGs and PPGs showed BT prediction trends consistent with known degradation pathways.
  •  
5.
  • Durjava, Mojca Kos, et al. (författare)
  • Experimental Assessment of the Environmental Fate and Effects of Triazoles and Benzotriazole
  • 2013
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 41:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The environmental fate and effects of triazoles and benzotriazoles are of concern within the context of chemical regulation. As part of an intelligent testing strategy, experimental tests were performed on endpoints that are relevant for risk assessment. The experimental tests included the assessment of eco-toxicity to an alga, a daphnid and zebrafish embryos, and the assessment of ready biodegradability. Triazole and benzotriazole compounds were selected for testing, based on existing toxicity data for vertebrate and invertebrate species, as well as on the principal component analysis of molecular descriptors aimed at selecting the minimum number of test compounds in order to maximise the chemical domain spanned for both compound classes. The experimental results show that variation in the toxicities of triazoles and benzotriazole across species was relatively minor; in general, the largest factor was approximately 20. The study conducted indicated that triazoles are not readily biodegradable.
  •  
6.
  • Golosovskaia, Elena, 1993- (författare)
  • Development of in silico methods to aid chemical risk assessment : focusing on kinetic interactions in mixtures
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The environment and biota are constantly exposed to numerous chemicals through contaminated food, soil, water, and air. These chemicals can be taken up and distributed to reach sensitive tissues where they may cause various effects. Many of these chemicals lack data on their environmental and human health effects. Traditional toxicological tests relying on animal experiments are today being phased out in favor of cell-based and computational methods for early hazard detection and exposure assessment. This thesis focuses on developing computational tools for various stages of chemical risk assessment with a particular focus on bisphenols and per- and polyfluoroalkyl substances (PFAS). In Paper I, quantitative structure-activity relationship (QSAR) models covering molecular targets of the thyroid hormone (TH) system were developed and applied to two data sets to prioritize chemicals of concern for detailed toxicological studies. In Papers II and III, experimental and computational approaches were combined to study toxicokinetics and maternal transfer in zebrafish. Our main focus was to study potential mixture effects on administration, distribution, metabolism, and elimination (ADME) processes, i.e., to reveal if co-exposed chemicals impact each other’s ADME. Physiologically based kinetic (PBK) mixture models were developed to allow translation of external exposure concentrations into tissue concentrations and modelling plausible mechanisms of chemical interactions in a mixture.Main findings of this thesis are summarized as follows:• Application of QSAR models (Paper I) to two chemical inventories revealed that chemicals found in human blood could induce a large iirange of pathways in the TH system whereas chemicals used in Sweden with predicted high exposure index to consumers showed a lower likelihood to induce TH pathways.• Two zebrafish experiments (Paper II and Paper III) did not reveal statistically significant mixture effects on ADME of chemicals.• In Paper II, a PBK mixture model for PFAS accounting for competitive plasma protein binding was developed. The model demonstrated good predictive performance. Competitive plasma protein binding did not affect the predicted internal concentrations.• In Paper III we developed a binary PBK model parametrized for two bisphenols and PFOS showing that competitive plasma protein binding has an effect on ADME of bisphenols at PFOS concentrations at μg/L levels. At these levels internal concentrations of bisphenols were shown to decrease, implying that PFOS outcompeted bisphenols from studied plasma proteins resulting in higher excretion rates.Developed QSAR models showed good predictive power and the ability to identify and prioritize chemicals of concern with confidence. Additionally, PBK models aid in hypotheses testing and predicting exposure concentrations at which co-exposed chemicals could potentially influence each other’s ADME properties. These tools will provide overall early tier data on exposure and effects using non-testing methods in assessment of risks of chemicals. 
  •  
7.
  • Golsteijn, Laura, et al. (författare)
  • Assessing predictive uncertainty in comparative toxicity potentials of triazoles
  • 2014
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 33:2, s. 293-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative toxicity potentials (CTPs) quantify the potential ecotoxicological impacts of chemicals per unit of emission. They are the product of a substance's environmental fate, exposure, and hazardous concentration. When empirical data are lacking, substance properties can be predicted. The goal of the present study was to assess the influence of predictive uncertainty in substance property predictions on the CTPs of triazoles. Physicochemical and toxic properties were predicted with quantitative structure-activity relationships (QSARs), and uncertainty in the predictions was quantified with use of the data underlying the QSARs. Degradation half-lives were based on a probability distribution representing experimental half-lives of triazoles. Uncertainty related to the species' sample size that was present in the prediction of the hazardous aquatic concentration was also included. All parameter uncertainties were treated as probability distributions, and propagated by Monte Carlo simulations. The 90% confidence interval of the CTPs typically spanned nearly 4 orders of magnitude. The CTP uncertainty was mainly determined by uncertainty in soil sorption and soil degradation rates, together with the small number of species sampled. In contrast, uncertainty in species-specific toxicity predictions contributed relatively little. The findings imply that the reliability of CTP predictions for the chemicals studied can be improved particularly by including experimental data for soil sorption and soil degradation, and by developing toxicity QSARs for more species. (c) 2013 SETAC
  •  
8.
  •  
9.
  • Iqbal, Muhammad Sarfraz, et al. (författare)
  • Understanding quantitative structure-property relationships uncertainty in environmental fate modeling
  • 2013
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 32:5, s. 1069-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • In cases in which experimental data on chemical-specific input parameters are lacking, chemical regulations allow the use of alternatives to testing, such as in silico predictions based on quantitative structure–property relationships (QSPRs). Such predictions are often given as point estimates; however, little is known about the extent to which uncertainties associated with QSPR predictions contribute to uncertainty in fate assessments. In the present study, QSPR-induced uncertainty in overall persistence (POV) and long-range transport potential (LRTP) was studied by integrating QSPRs into probabilistic assessments of five polybrominated diphenyl ethers (PBDEs), using the multimedia fate model Simplebox. The uncertainty analysis considered QSPR predictions of the fate input parameters' melting point, water solubility, vapor pressure, organic carbon–water partition coefficient, hydroxyl radical degradation, biodegradation, and photolytic degradation. Uncertainty in POV and LRTP was dominated by the uncertainty in direct photolysis and the biodegradation half-life in water. However, the QSPRs developed specifically for PBDEs had a relatively low contribution to uncertainty. These findings suggest that the reliability of the ranking of PBDEs on the basis of POV and LRTP can be substantially improved by developing better QSPRs to estimate degradation properties. The present study demonstrates the use of uncertainty and sensitivity analyses in nontesting strategies and highlights the need for guidance when compounds fall outside the applicability domain of a QSPR.
  •  
10.
  • Li, Zhe, et al. (författare)
  • High-throughput evaluation of organic contaminant removal efficiency in a wastewater treatment plant using direct injection UHPLC-Orbitrap-MS/MS
  • 2018
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 20:3, s. 561-571
  • Tidskriftsartikel (refereegranskat)abstract
    • The removal efficiency (RE) of organic contaminants in wastewater treatment plants (WWTPs) is a major determinant of the environmental impact of these contaminants. However, RE data are available for only a few chemicals due to the time and cost required for conventional target analysis. In the present study, we applied non-target screening analysis to evaluate the RE of polar contaminants, by analyzing influent and effluent samples from a Swedish WWTP with direct injection UHPLC-Orbitrap-MS/MS. Matrix effects were evaluated by spiking the samples with isotope-labeled standards of 40 polar contaminants. For 85% of the compounds, the matrix effects in the influent and effluent were not significantly different. Approximately 10000 compounds were detected in the wastewater, of which 319 were identified by using the online database mzCloud. Level 1 identification confidence was achieved for 31 compounds for which we had reference standards, and level 2 was achieved for the remainder. RE was calculated from the ratio of the peak areas in the influent and the effluent from the non-target analysis. Good agreement was found with RE determined from the target analysis of the target compounds. The method generated reliable estimates of RE for large numbers of contaminants with comparatively low effort and is foreseen to be particularly useful in applications where information on a large number of chemicals is needed.
  •  
11.
  • Mansouri, Kamel, et al. (författare)
  • CoMPARA : Collaborative Modeling Project for Androgen Receptor Activity
  • 2020
  • Ingår i: Journal of Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 128:2, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling.OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP).METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast (TM) metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast (TM)/Tox21 HTS in vitro assays.RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set.DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of similar to 875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment.
  •  
12.
  • Papa, Ester, et al. (författare)
  • Multivariate Chemical Mapping of Antibiotics and Identification of Structurally Representative Substances
  • 2007
  • Ingår i: Environ. Sci. Technol. - : American Chemical Society (ACS). ; 41:5, s. 1653-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotics used in human and veterinary medicine have been found in samples from diverse environments in many parts of the world. To assess the environmental risks associated with them, data regarding their toxicity, occurrence, and fate are needed, but gathering such data is time-consuming and expensive. An efficient approach to address these difficulties would be to select a small subset of antibiotics with a wide variation in chemical characteristics, perform experimental tests on this subset, and then extrapolate the results to larger numbers of antibiotics, including the most potentially hazardous compounds. To assess the potential utility of such an approach, a set of 92 antibiotics for human use was studied and their structural properties were described with 24 chemical descriptors that included information on their steric, lipophilic, and electronic properties. Principal component analysis in combination with statistical experimental design was used to map the chemical diversity of the antibiotics and to select a small subset, a "training set", of 20 antibiotics. The chemical representativity of the training set was assessed in a quantitative structure-activity model established to predict ultimate biodegradation. The selected antibiotics showed to cover the chemical variation of the studied antibiotics and are suggested for use in future testing programs to assess antibiotics' fate and effects in the environment.
  •  
13.
  •  
14.
  •  
15.
  • Tetko, Igor V, et al. (författare)
  • Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis : focusing on applicability domain and overfitting by variable selection.
  • 2008
  • Ingår i: Journal of chemical information and modeling. - : American Chemical Society. - 1549-9596 .- 1549-960X. ; 48:9, s. 1733-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The estimation of the accuracy of predictions is a critical problem in QSAR modeling. The "distance to model" can be defined as a metric that defines the similarity between the training set molecules and the test set compound for the given property in the context of a specific model. It could be expressed in many different ways, e.g., using Tanimoto coefficient, leverage, correlation in space of models, etc. In this paper we have used mixtures of Gaussian distributions as well as statistical tests to evaluate six types of distances to models with respect to their ability to discriminate compounds with small and large prediction errors. The analysis was performed for twelve QSAR models of aqueous toxicity against T. pyriformis obtained with different machine-learning methods and various types of descriptors. The distances to model based on standard deviation of predicted toxicity calculated from the ensemble of models afforded the best results. This distance also successfully discriminated molecules with low and large prediction errors for a mechanism-based model developed using log P and the Maximum Acceptor Superdelocalizability descriptors. Thus, the distance to model metric could also be used to augment mechanistic QSAR models by estimating their prediction errors. Moreover, the accuracy of prediction is mainly determined by the training set data distribution in the chemistry and activity spaces but not by QSAR approaches used to develop the models. We have shown that incorrect validation of a model may result in the wrong estimation of its performance and suggested how this problem could be circumvented. The toxicity of 3182 and 48774 molecules from the EPA High Production Volume (HPV) Challenge Program and EINECS (European chemical Substances Information System), respectively, was predicted, and the accuracy of prediction was estimated. The developed models are available online at http://www.qspr.org site.
  •  
16.
  • Zhu, Hao, et al. (författare)
  • Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis
  • 2008
  • Ingår i: Journal of chemical information and modeling. - : American Chemical Society. - 1549-9596 .- 1549-960X. ; 48:4, s. 766-784
  • Tidskriftsartikel (refereegranskat)abstract
    • Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the external validation data sets with the highest space coverage as compared to individual constituent models. Our studies prove the power of a collaborative and consensual approach to QSAR model development. The best validated models of aquatic toxicity developed by our collaboratory (both individual and consensus) can be used as reliable computational predictors of aquatic toxicity and are available from any of the participating laboratories.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy