SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paquet J) "

Sökning: WFRF:(Paquet J)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morrison, C. A., et al. (författare)
  • Bird population declines and species turnover are changing the acoustic properties of spring soundscapes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural sounds, and bird song in particular, play a key role in building and maintaining our connection with nature, but widespread declines in bird populations mean that the acoustic properties of natural soundscapes may be changing. Using data-driven reconstructions of soundscapes in lieu of historical recordings, here we quantify changes in soundscape characteristics at more than 200,000 sites across North America and Europe. We integrate citizen science bird monitoring data with recordings of individual species to reveal a pervasive loss of acoustic diversity and intensity of soundscapes across both continents over the past 25 years, driven by changes in species richness and abundance. These results suggest that one of the fundamental pathways through which humans engage with nature is in chronic decline, with potentially widespread implications for human health and well-being.
  •  
2.
  •  
3.
  • Lessa Benedet, Andréa, et al. (författare)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
4.
  • Saddiki, H., et al. (författare)
  • Age and the association between apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker-based case-control study
  • 2020
  • Ingår i: Plos Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The epsilon 4 allele of apolipoprotein E (APOE) gene and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The diagnosis of AD based on clinical symptoms alone is known to have poor specificity; recently developed diagnostic criteria based on biomarkers that reflect underlying AD neuropathology allow better assessment of the strength of the associations of risk factors with AD. Accordingly, we examined the global and age-specific association betweenAPOEgenotype and AD by using the A/T/N classification, relying on the cerebrospinal fluid (CSF) levels of beta-amyloid peptide (A, beta-amyloid deposition), phosphorylated tau (T, pathologic tau), and total tau (N, neurodegeneration) to identify patients with AD. Methods and findings This case-control study included 1,593 white AD cases (55.4% women; mean age 72.8 [range = 44-96] years) with abnormal values of CSF biomarkers from nine European memory clinics and the American Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A total of 11,723 dementia-free controls (47.1% women; mean age 65.6 [range = 44-94] years) were drawn from two longitudinal cohort studies (Whitehall II and Three-City), in which incident cases of dementia over the follow-up were excluded from the control population. Odds ratio (OR) and population attributable fraction (PAF) for AD associated withAPOEgenotypes were determined, overall and by 5-year age categories. In total, 63.4% of patients with AD and 22.6% of population controls carried at least oneAPOE epsilon 4 allele. Compared with non-epsilon 4 carriers, heterozygous epsilon 4 carriers had a 4.6 (95% confidence interval 4.1-5.2;p< 0.001) and epsilon 4/epsilon 4 homozygotes a 25.4 (20.4-31.2;p< 0.001) higher OR of AD in unadjusted analysis. This association was modified by age (pfor interaction < 0.001). The PAF associated with carrying at least one epsilon 4 allele was greatest in the 65-70 age group (69.7%) and weaker before 55 years (14.2%) and after 85 years (22.6%). The protective effect ofAPOE epsilon 2 allele for AD was unaffected by age. Main study limitations are that analyses were based on white individuals and AD cases were drawn from memory centers, which may not be representative of the general population of patients with AD. Conclusions In this study, we found that AD diagnosis based on biomarkers was associated with APOE epsilon 4 carrier status, with a higher OR than previously reported from studies based on only clinical AD criteria. This association differs according to age, with the strongest effect at 65-70 years. These findings highlight the need for early interventions for dementia prevention to mitigate the effect ofAPOE epsilon 4 at the population level. Author summaryWhy was this study done? The epsilon 4 allele of apolipoprotein E () gene () and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The recent development of diagnostic criteria based on biomarkers that reflect brain beta-amyloid and tau lesions (beta-amyloid deposition, pathologic tau, neurodegeneration [A/T/N] classification]) increases homogeneity in diagnosed cases. The strength of association of AD with risk factors can be better determined using biomarker-based AD compared with AD diagnosis based only on clinical criteria because the latter are known to lack specificity as a result of difficulties in ruling out other causes of dementia. What did the researchers do and find? We compared the overall and age-specific association between and AD using a case-control study that included 1,593 AD cases from memory clinics with positive cerebrospinal fluid biomarkers and 11,723 dementia-free controls drawn from two longitudinal cohort studies. The use of a large number of cases and controls allows assessment of whether the association between and AD is dependent on age. Compared with controls, patients with AD were more likely to carry one (odds ratio [OR] = 4.6) or two (OR = 25.3). This association was significantly modified by age, with the strongest association seen between 65 and 70 years of age and weaker associations at the two tails of the age distribution. What do these findings mean? Incorporating biomarkers for diagnosis of AD identified an association with that is apparently greater than has been previously reported using clinical diagnosis of the disease. The impact of on the risk of AD was strongest between the 65 and 70 years of age, earlier than the mean age at diagnosis in this study, which was 72.8 years.
  •  
5.
  • Boza-Serrano, A., et al. (författare)
  • Galectin-3 is elevated in CSF and is associated with A beta deposits and tau aggregates in brain tissue in Alzheimer's disease
  • 2022
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533.
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around A beta plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n=119) compared to control individuals (n= 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-beta. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-beta positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T +N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.
  •  
6.
  • Dumurgier, J., et al. (författare)
  • A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. Methods Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF beta-amyloid (A beta) peptide biomarkers. These A beta cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. Results A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. Discussion The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification.
  •  
7.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • Full-length and C-terminal neurogranin in Alzheimer's disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays
  • 2020
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Neurogranin (Ng) is a neuron-specific and postsynaptic protein that is abundantly expressed in the brain, particularly in the dendritic spine of the hippocampus and cerebral cortex. The enzymatic cleavage of Ng produces fragments that are released into cerebrospinal (CSF), which have been shown to be elevated in Alzheimer's disease (AD) patients and predict cognitive decline. Thus, quantification of distinctive cleavage products of Ng could elucidate different features of the disease. Methods In this study, we developed novel ultrasensitive single molecule array (Simoa) assays for measurement of full-length neurogranin (FL-Ng) and C-terminal neurogranin (CT-Ng) fragments in CSF. The Ng Simoa assays were evaluated in CSF samples from AD patients (N = 23), mild cognitive impairment due to AD (MCI-AD) (N = 18), and from neurological controls (N = 26). Results The intra-assay repeatability and inter-assay precision of the novel methods had coefficients of variation below 7% and 14%, respectively. CSF FL-Ng and CSF CT-Ng median concentrations were increased in AD patients (6.02 ng/L, P < 0.00001 and 452 ng/L, P = 0.00001, respectively) and in patients with MCI-AD (5.69 ng/L, P < 0.00001 and 566 ng/L, P < 0.00001) compared to neurological controls (0.644 ng/L and 145 ng/L). The median CSF ratio of CT-Ng/FL-Ng were decreased in AD patients (ratio = 101, P = 0.008) and in patients with MCI-AD (ratio = 115, P = 0.016) compared to neurological controls (ratio = 180). CSF of FL-Ng, CT-Ng, and ratio of CT-Ng/FL-Ng could each significantly differentiate AD patients from controls (FL-Ng, AUC = 0.907; CT-Ng, AUC = 0.913; CT-Ng/FL-Ng, AUC = 0.775) and patients with MCI-AD from controls (FL-Ng, AUC = 0.937; CT-Ng, AUC = 0.963; CT-Ng/FL-Ng, AUC = 0.785). Conclusions Assessments of the FL-Ng and CT-Ng levels in CSF with the novel sensitive immunoassays provide a high separation of AD from controls, even in early phase of the disease. The novel Ng assays are robust and highly sensitive and may be valuable tools to study synaptic alteration in AD, as well as to monitor the effect on synaptic integrity of novel drug candidates in clinical trials.
  •  
8.
  •  
9.
  • Kuehlewein, Laura, et al. (författare)
  • Clinical phenotype and course of PDE6A-associated retinitis pigmentosa disease, characterized in preparation for a gene supplementation trial
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 138:12, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Treatment trials require sound knowledge on the natural course of disease. OBJECTIVE To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. EXPOSURES Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. MAIN OUTCOMES AND MEASURES Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). RESULTS Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). CONCLUSIONS AND RELEVANCE Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
  •  
10.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Clinical performance and head-to-head comparison of CSF p-tau235 with p-tau181, p-tau217 and p-tau231 in two memory clinic cohorts
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cerebrospinal fluid (CSF) p-tau235 is a novel biomarker highly specific of Alzheimer's disease (AD). However, CSF p-tau235 has only been studied in well-characterized research cohorts, which do not fully reflect the patient landscape found in clinical settings. Therefore, in this multicentre study, we investigated the performance of CSF p-tau235 to detect symptomatic AD in clinical settings and compared it with CSF p-tau181, p-tau217 and p-tau231.Methods CSF p-tau235 was measured using an in-house single molecule array (Simoa) assay in two independent memory clinic cohorts: Paris cohort (Lariboisiere Fernand-Widal University Hospital Paris, France; n=212) and BIODEGMAR cohort (Hospital del Mar, Barcelona, Spain; n=175). Patients were classified by the syndromic diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI] or dementia) and their biological diagnosis (amyloid-beta [A beta]+ or A beta -) Both cohorts included detailed cognitive assessments and CSF biomarker measurements (clinically validated core AD biomarkers [Lumipulse CSF A beta(1-42/40) ratio, p-tau181 and t-tau] and in-house developed Simoa CSF p-tau181, p-tau217 and p-tau231).Results High CSF p-tau235 levels were strongly associated with CSF amyloidosis regardless of the clinical diagnosis, being significantly increased in MCI A beta+ and dementia A beta+ when compared with all other A beta- groups (Paris cohort: P < 0.0001 for all; BIODEGMAR cohort: P < 0.05 for all). CSF p-tau235 was pronouncedly increased in the A+T+ profile group compared with A-T- and A+T- groups (P < 0.0001 for all). Moreover, CSF p-tau235 demonstrated high diagnostic accuracies identifying CSF amyloidosis in symptomatic cases (AUCs=0.86 to 0.96) and discriminating AT groups (AUCs=0.79 to 0.98). Overall, CSF p-tau235 showed similar performances to CSF p-tau181 and CSF p-tau231 when discriminating CSF amyloidosis in various scenarios, but lower than CSF p-tau217. Finally, CSF p-tau235 associated with global cognition and memory domain in both cohorts.Conclusions CSF p-tau235 was increased with the presence of CSF amyloidosis in two independent memory clinic cohorts. CSF p-tau235 accurately identified AD in both MCI and dementia patients. Overall, the diagnostic performance of CSF p-tau235 was comparable to that of other CSF p-tau measurements, indicating its suitability to support a biomarker-based AD diagnosis in clinical settings.
  •  
11.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:6, s. 661-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer & apos;s disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisiere and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials. A mass spectrometric analysis of plasma tau species identifies phosphorylated tau peptides p-tau217, p-tau231 and p-tau205 with distinct correlations with amyloid and tau pathologies and emergences along the AD continuum.
  •  
12.
  •  
13.
  • Mouton-Liger, F., et al. (författare)
  • CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer's disease
  • 2020
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer's disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. Methods: This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for A beta 1-42, A beta 1-40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. Results: Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with A beta 1-42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. Conclusions: Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD.
  •  
14.
  • Paquet-Durand, F., et al. (författare)
  • How Long Does a Photoreceptor Cell Take to Die? Implications for the Causative Cell Death Mechanisms
  • 2014
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Springer New York. - 0065-2598. ; 801, s. 575-581
  • Tidskriftsartikel (refereegranskat)abstract
    • The duration of cell death may allow deducing the underlying degenerative mechanism. To find out how long a photoreceptor takes to die, we used the rdl mouse model for retinal neurodegeneration, which is characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cGMP levels. Based on cellular data on the progression of cGMP accumulation, cell death, and survival, we created a mathematical model to simulate the temporal development of the degeneration and the clearance of dead cells. Both cellular data and modelling suggested that at the level of the individual cell, the degenerative process was rather slow, taking around 80 h to complete. Organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast, confirmed the surprisingly long duration of an individual photoreceptor cell's death. We briefly discuss the possibility to link different cell death stages and their temporal progression to specific enzymatic activities known to be causally connected to cell death. This in turn opens up new perspectives for the treatment of inherited retinal degeneration, both in terms of therapeutic targets and temporal windows-of-opportunity.
  •  
15.
  • Sahaboglu, A., et al. (författare)
  • Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms
  • 2013
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • For most neurodegenerative diseases the precise duration of an individual cell's death is unknown, which is an obstacle when counteractive measures are being considered. To address this, we used the rd1 mouse model for retinal neurodegeneration, characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cyclic guanosinemono-phosphate (cGMP) levels. Using cellular data on cGMP accumulation, cell death, and survival, we created mathematical models to simulate the temporal development of the degeneration. We validated model predictions using organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast. Together, photoreceptor data and modeling for the first time delineated three major cell death phases in a complex neuronal tissue: (1) initiation, taking up to 36 h, (2) execution, lasting another 40 h, and finally (3) clearance, lasting about 7 h. Surprisingly, photoreceptor neurodegeneration was noticeably slower than necrosis or apoptosis, suggesting a different mechanism of death for these neurons. Cell Death and Disease (2013) 4, e488; doi: 10.1038/cddis.2013.12; published online 7 February 2013
  •  
16.
  • Sancho-Pelluz, J., et al. (författare)
  • Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse
  • 2010
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP. Cell Death and Disease (2010) 1, e24; doi:10.1038/cddis.2010.4; published online 11 February 2010
  •  
17.
  • Sancho-Pelluz, J., et al. (författare)
  • Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration
  • 2008
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 38:3, s. 253-269
  • Forskningsöversikt (refereegranskat)abstract
    • Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
  •  
18.
  • Tible, M., et al. (författare)
  • Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To assess the ability of a combination of synaptic CSF biomarkers to separate Alzheimer disease (AD) and non-AD disorders and to help in the differential diagnosis between neurocognitive diseases. Methods This was a retrospective cross-sectional monocentric study. All participants explored with CSF assessments for neurocognitive decline were invited to participate. After complete clinical and imaging evaluations, 243 patients were included. CSF synaptic (GAP-43, neurogranin, SNAP-25 total, SNAP-25aa40, synaptotagmin-1) and AD biomarkers were blindly quantified with ELISA or mass spectrometry. Statistical analysis compared CSF levels between the various groups of AD dementias (n = 81), mild cognitive impairment (MCI)-AD (n = 30), other MCI (n = 49), other dementias (OD) (n = 49), and neurologic controls (n = 35) and their discriminatory powers. Results All synaptic biomarkers were significantly increased in patients with MCI-AD and AD-dementia compared to the other groups. All synaptic biomarkers could efficiently discriminate AD dementias from OD (AUC >= 0.80). All but synaptotagmin were also able to discriminate patients with MCI-AD from controls (area under the curve [AUC] >= 0.85) and those with AD dementias from controls (AUC >= 0.80). Overall, CSF SNAP-25aa40 had the highest discriminative power (AUC 0.93 between patients with AD dementias and controls or OD, AUC 0.90 between those with MCI-AD and controls). Higher levels were associated with 2 alleles ofAPOE epsilon 4. Conclusion All synaptic biomarkers tested had a good discriminatory power to distinguish patients with AD abnormal CSF from those with non-AD disorders. SNAP25aa40 demonstrated the highest power to discriminate AD CSF-positive patients from patients without AD and neurologic controls in this cohort. Classification of evidence This retrospective study provides Class II evidence that CSF synaptic biomarkers discriminate patients with AD from those without AD.
  •  
19.
  • Vrillon, A., et al. (författare)
  • Plasma neuregulin 1 as a synaptic biomarker in Alzheimer's disease: a discovery cohort study
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. Objective To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. Methods This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, A beta-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (A beta 42/A beta 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. Results Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (beta = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in A beta-positive patients (beta = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (beta = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in A beta-positive patients (all, beta = -0.188, P = 0.038; A beta+: beta = -0.255, P = 0.038). Conclusion Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD.
  •  
20.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease
  • 2016
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is a central pathogenic event in Alzheimer's disease that occurs early during the course of disease and correlates with cognitive symptoms. The pre-synaptic vesicle protein synaptotagmin-1 appears to be essential for the maintenance of an intact synaptic transmission and cognitive function. Synaptotagmin-1 in cerebrospinal fluid is a candidate Alzheimer biomarker for synaptic dysfunction that also may correlate with cognitive decline. Methods: In this study, a novel mass spectrometry-based assay for measurement of cerebrospinal fluid synaptotagmin-1 was developed, and was evaluated in two independent sample sets of patients and controls. Sample set I included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 17, age 52-86 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 5, age 62-88 years), and controls (N = 17, age 41-82 years). Sample set II included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 24, age 52-84 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 18, age 58-83 years), and controls (N = 36, age 43-80 years). Results: The reproducibility of the novel method showed coefficients of variation of the measured synaptotagmin-1 peptide 215-223 (VPYSELGGK) and peptide 238-245 (HDIIGEFK) of 14 % or below. In both investigated sample sets, the CSF levels of synaptotagmin-1 were significantly increased in patients with dementia due to Alzheimer's disease (P <= 0.0001) and in patients with mild cognitive impairment due to Alzheimer's disease (P < 0.001). In addition, in sample set I the synaptotagmin-1 level was significantly higher in patients with mild cognitive impairment due to Alzheimer's disease compared with patients with dementia due to Alzheimer's disease (P <= 0.05). Conclusions: Cerebrospinal fluid synaptotagmin-1 is a promising biomarker to monitor synaptic dysfunction and degeneration in Alzheimer's disease that may be useful for clinical diagnosis, to monitor effect on synaptic integrity by novel drug candidates, and to explore pathophysiology directly in patients with Alzheimer's disease.
  •  
21.
  • Gaget, Elie, et al. (författare)
  • Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming
  • 2021
  • Ingår i: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 35:3, s. 834-845
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993–2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.
  •  
22.
  •  
23.
  • Gonzalez, Maria C, et al. (författare)
  • Association of Plasma p-tau181 and p-tau231 Concentrations With Cognitive Decline in Patients With Probable Dementia With Lewy Bodies.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:1, s. 32-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau (p-tau) has proven to be an accurate biomarker for Alzheimer disease (AD) pathologic characteristics, offering a less expensive and less invasive alternative to cerebrospinal fluid (CSF) and positron emission tomography biomarkers for amyloid-β and tau. Alzheimer disease comorbid pathologic characteristics are common and are associated with more rapid cognitive decline in patients with dementia with Lewy bodies (DLB); therefore, it is anticipated that plasma p-tau concentrations may have utility in assessing cognitive impairment in individuals with this disorder.To measure the concentrations of plasma p-tau (p-tau181 and p-tau231) and evaluate their associations with cognitive decline in individuals with probable DLB.This multicenter longitudinal cohort study included participants from the European-DLB (E-DLB) Consortium cohort enrolled at 10 centers with harmonized diagnostic procedures from January 1, 2002, to December 31, 2020, with up to 5 years of follow-up. A total of 1122 participants with plasma samples were available. Participants with acute delirium or terminal illness and patients with other previous major psychiatric or neurologic disorders were excluded, leaving a cohort of 987 clinically diagnosed participants with probable DLB (n=371), Parkinson disease (n=204), AD (n=207), as well as healthy controls (HCs) (n=205).The main outcome was plasma p-tau181 and p-tau231 levels measured with in-house single molecule array assays. The Mini-Mental State Examination (MMSE) was used to measure cognition.Among this cohort of 987 patients (512 men [51.9%]; mean [SD] age, 70.0 [8.8] years), patients with DLB did not differ significantly regarding age, sex, or years of education from those in the AD group, but the DLB group was older than the HC group and included more men than the AD and HC groups. Baseline concentrations of plasma p-tau181 and p-tau231 in patients with DLB were significantly higher than those in the HC group but lower than in the AD group and similar to the Parkinson disease group. Higher plasma concentrations of both p-tau markers were found in a subgroup of patients with DLB with abnormal CSF amyloid-β42 levels compared with those with normal levels (difference in the groups in p-tau181, -3.61 pg/mL; 95% CI, -5.43 to -1.79 pg/mL; P=.049; difference in the groups in p-tau231, -2.51 pg/mL; 95% CI, -3.63 to -1.39 pg/mL; P=.02). There was no difference between p-tau181 level and p-tau231 level across confirmed AD pathologic characteristcs based on reduced Aβ42 level in CSF in individuals with DLB. In DLB, a significant association was found between higher plasma p-tau181 and p-tau231 levels and lower MMSE scores at baseline (for p-tau181, -0.092 MMSE points; 95% CI, -0.12 to -0.06 MMSE points; P=.001; for p-tau231, -0.16 MMSE points; 95% CI, -0.21 to -0.12 MMSE points; P<.001), as well as more rapid MMSE decline over time. Plasma p-tau181 level was associated with a decrease of -0.094 MMSE points per year (95% CI, -0.144 to -0.052 MMSE points; P=.02), whereas plasma p-tau231 level was associated with an annual decrease of -0.130 MMSE points (95% CI, -0.201 to -0.071 MMSE points; P=.02), after adjusting for sex and age.This study suggests that plasma p-tau181 and p-tau231 levels may be used as cost-effective and accessible biomarkers to assess cognitive decline in individuals with DLB.
  •  
24.
  • Gonzalez, Maria Camila, et al. (författare)
  • Cognitive and motor decline in dementia with lewy bodies and Parkinson's disease dementia
  • 2023
  • Ingår i: Movement Disorders Clinical Practice. - : John Wiley & Sons. - 2330-1619. ; 10:6, s. 980-986
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is a need to better understand the rate of cognitive and motor decline of Dementia with Lewy bodies (DLB) and Parkinson's disease Dementia (PDD).Objectives: To compare the rate of cognitive and motor decline in patients with DLB and PDD from the E-DLB Consortium and the Parkinson's Incidence Cohorts Collaboration (PICC) Cohorts.Methods: The annual change in MMSE and MDS-UPDRS part III was estimated using linear mixed regression models in patients with at least one follow-up (DLB n = 837 and PDD n = 157).Results: When adjusting for confounders, we found no difference in the annual change in MMSE between DLB and PDD (−1.8 [95% CI −2.3, −1.3] vs. −1.9 [95% CI −2.6, −1.2] [P = 0.74]). MDS-UPDRS part III showed nearly identical annual changes (DLB 4.8 [95% CI 2.1, 7.5]) (PDD 4.8 [95% CI 2.7, 6.9], [P = 0.98]).Conclusions: DLB and PDD showed similar rates of cognitive and motor decline. This is relevant for future clinical trial designs.
  •  
25.
  • Heldbjerg, Henning, et al. (författare)
  • Contrasting population trends of common starlings (Sturnus vulgaris) across Europe
  • 2019
  • Ingår i: Ornis Fennica. - 0030-5685. ; 96:4, s. 153-168
  • Tidskriftsartikel (refereegranskat)abstract
    • The greatest loss of biodiversity in the EU has occurred on agricultural land. The Common Starling (Sturnus vulgaris) is one of the many numerous and widespread European farmland breeding bird species showing major population declines linked to European agricultural intensification. Here we present results based on monitoring data collected since 1975 in 24 countries to examine the influence of changing extent of grassland and cattle abundance (based on results of earlier studies showing the importance of lowland cattle grazed grassland for the species), wintering provenance and temperature on national breeding population trends of Starlings across Europe. Positive Starling population trends in Central-East Europe contrast with negative trends in North and West Europe. Based on this indicative approach, we found some support for the importance of cattle stock and no support for grassland, temperature or wintering provenance to explain Starling population trends in Europe. However, we acknowledge such a European-wide analysis may conceal regional differences in responses and suggest that currently accessible national land use data might be insufficient to describe the detailed current changes in animal husbandry and grassland management that may be responsible for changes in food availability and hence breeding Starling abundance and their differences across Europe. Reviewing results from local studies relating Starling population trends to local agricultural change offer contradictory results, suggesting complex interacting processes at work. We recommend combining national datasets on demography, land-use/agricultural practices and from autecological research to better explain the reasons for contrasting Starling trends across Europe, to enable us to predict how changing agriculture will affect Starlings and potentially suggest mitigation measures to restore local populations where possible.
  •  
26.
  • Karikari, Thomas, et al. (författare)
  • Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer's disease diagnosis.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 755-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) is an established Alzheimer's disease (AD) biomarker. Novel immunoassays targeting N-terminal and mid-region p-tau181 and p-tau217 fragments are available, but head-to-head comparison in clinical settings is lacking.N-terminal-directed p-tau217 (N-p-tau217), N-terminal-directed p-tau181 (N-p-tau181), and standard mid-region p-tau181 (Mid-p-tau181) biomarkers in CSF were evaluated in three cohorts (n=503) to assess diagnostic performance, concordance, and associations with amyloid beta (Aβ).CSF N-p-tau217 and N-p-tau181 had better concordance (88.2%) than either with Mid-p-tau181 (79.7%-82.7%). N-p-tau217 and N-p-tau181 were significantly increased in early mild cognitive impairment (MCI)-AD (A+T-N-) without changes in Mid-p-tau181 until AD-dementia. N-p-tau217 and N-p-tau181 identified Aβ pathophysiology (area under the curve [AUC]=94.8%-97.1%) and distinguished MCI-AD from non-AD MCI (AUC=82.6%-90.5%) signficantly better than Mid-p-tau181 (AUC=91.2% and 70.6%, respectively). P-tau biomarkers equally differentiated AD from non-AD dementia (AUC=99.1%-99.8%).N-p-tau217 and N-p-tau181 could improve diagnostic accuracy in prodromal-AD and clinical trial recruitment as both identify Aβ pathophysiology and differentiate early MCI-AD better than Mid-p-tau181.
  •  
27.
  • Lantero Rodriguez, Juan, et al. (författare)
  • CSF p-tau205: a biomarker of tau pathology in Alzheimer's disease.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n=47), an unselected clinical cohort (n=212) and a research cohort well-characterized by fluid and imaging biomarkers (n=262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid(Aβ) and tau pathology positive (A+T+) cases (P<0.01). In A+cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205=0.67, rSp202=0.45) than Aβ-PET (rSp205=0.40, rSp202=0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P<0.01), whereas p-tau202 only increased in Braak V-VI (P<0.0001). Both showed stronger regional associations with tau-PET than with Aβ-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aβ and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2=69.7%; CSF p-tau202: R2=85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205=-0.36, rSp202=-0.33) and regionally, and correlated with cognition (rSp205=-0.38/-0.40, rSp202=-0.20/-0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.
  •  
28.
  •  
29.
  • Pavón-Jordán, Diego, et al. (författare)
  • Habitat- and species-mediated short- and long-term distributional changes in waterbird abundance linked to variation in European winter weather
  • 2019
  • Ingår i: Diversity and Distributions. - : Wiley. - 1366-9516. ; 25:2, s. 225-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Many species are showing distribution shifts in response to environmental change. We explored (a) the effects of inter-annual variation in winter weather conditions on non-breeding distributional abundance of waterbirds exploiting different habitats (deep-water, shallow water, farmland) and (b) the long-term shift in the population centroid of these species and investigate its link to changes in weather conditions. Location: Europe. Methods: We fitted generalized additive mixed Models to a large-scale, 24-year dataset (1990–2013) describing the winter distributional abundance of 25 waterbird species. We calculated the annual and long-term (3-year periods) population centroid of each species and used the winter North Atlantic Oscillation (NAO) index to explain the inter-annual and long-term shifts in their location. Results: (a) Year-to-year southwestwards shifts in the population centroids of deep- and shallow-water species were linked to negative NAO values. Shallow-water species shifted northeastwards associated with positive NAO values and the distance shifted increased with increasing NAO. Deep-water species shifted northeastwards up to zero NAO indices, but showed no further increase at higher NAO values. (b) Deep-water species showed long-term northeastwards shifts in distributional abundance throughout the 1990s and the 2000s. Shallow-water species, on the other hand, shifted northeastwards during the 1990s and early 2000s, but southwestwards thereafter. There were no significant links between the NAO and year-to-year movements or long-term shifts in farmland species’ population centroid. Main Conclusions: We provide evidence for a link between both year-to-year and long-term changes in waterbird winter distributional abundances at large geographical scales to short- and long-term changes in winter weather conditions. We also show that species using shallow water, deep-water and farmland habitats responded differently, especially at high NAO values. As well as important ecological implications, these findings contribute to the development of future conservation measures for these species under current and future climate change.
  •  
30.
  • Snellman, Anniina, et al. (författare)
  • N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:8, s. 2834-2848
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain-derived tau secreted into CSF and blood consists of different N-terminal and mid-domain fragments, which may have a differential temporal course and thus, biomarker potential across the Alzheimer's disease continuum or in other neurological diseases. While current clinically validated total-tau (t-tau) assays target mid-domain epitopes, comparison of these assays with new biomarkers targeting N-terminal epitopes using the same analytical platform may be important to increase the understanding of tau pathophysiology. We developed three t-tau immunoassays targeting specific N-terminal (NTA and NTB t-tau) or mid-region (MR t-tau) epitopes, using single molecule array technology. After analytical validation, the diagnostic performance of these biomarkers was evaluated in CSF and compared with the Innotest t-tau (and as proof of concept, with N-p-tau181 and N-p-tau217) in three clinical cohorts (n = 342 total). The cohorts included participants across the Alzheimer's disease continuum (n = 276), other dementia (n = 22), Creutzfeldt-Jakob disease (n = 24), acute neurological disorders (n = 18) and progressive supranuclear palsy (n = 22). Furthermore, we evaluated all three new t-tau biomarkers in plasma (n = 44) and replicated promising findings with NTA t-tau in another clinical cohort (n = 50). In CSF, all t-tau biomarkers were increased in Alzheimer's disease compared with controls (P < 0.0001) and correlated with each other (rs = 0.53-0.95). NTA and NTB t-tau, but not other t-tau assays, distinguished amyloid-positive and amyloid-negative mild cognitive impairment with high accuracies (AUCs 84% and 82%, P < 0.001) matching N-p-tau217 (AUC 83%; DeLong test P = 0.93 and 0.88). All t-tau assays were excellent in differentiating Alzheimer's disease from other dementias (P < 0.001, AUCs 89-100%). In Creutzfeldt-Jakob disease and acute neurological disorders, N-terminal t-tau biomarkers had significantly higher fold changes versus controls in CSF (45-133-fold increase) than Innotest or MR t-tau (11-42-fold increase, P < 0.0001 for all). In progressive supranuclear palsy, CSF concentrations of all t-tau biomarkers were similar to those in controls. Plasma NTA t-tau concentrations were increased in Alzheimer's disease compared with controls in two independent cohorts (P = 0.0056 and 0.0033) while Quanterix t-tau performed poorly (P = 0.55 and 0.44). Taken together, N-terminal-directed CSF t-tau biomarkers increase ahead of standard t-tau alternatives in the Alzheimer's disease continuum, increase to higher degrees in Creutzfeldt-Jakob disease and acute neurological diseases and show better potential than Quanterix t-tau as Alzheimer's disease blood biomarkers. For progressive supranuclear palsy, other tau biomarkers should still be investigated.
  •  
31.
  • Stephens, Philip A., et al. (författare)
  • Consistent response of bird populations to climate change on two continents
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 352:6281, s. 84-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.
  •  
32.
  • Vrillon, Agathe, et al. (författare)
  • Comparison of CSF and plasma NfL and pNfH for Alzheimer’s disease diagnosis: a memory clinic study
  • 2023
  • Ingår i: Journal of Neurology. - 0340-5354 .- 1432-1459.
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma neurofilament light chain (NfL) is a promising biomarker of axonal damage for the diagnosis of neurodegenerative diseases. Phosphorylated neurofilament heavy chain (pNfH) has demonstrated its value in motor neuron diseases diagnosis, but has less been explored for dementia diagnosis. In a cross-sectional study, we compared cerebrospinal fluid (CSF) and plasma NfL and pNfH levels in n = 188 patients from Lariboisière Hospital, Paris, France, including AD patients at mild cognitive impairment stage (AD-MCI, n = 36) and dementia stage (n = 64), non-AD MCI (n = 38), non-AD dementia (n = 28) patients and control subjects (n = 22). Plasma NfL, plasma and CSF pNfH levels were measured using Simoa and CSF NfL using ELISA. The correlation between CSF and plasma levels was stronger for NfL than pNfH (rho = 0.77 and rho = 0.52, respectively). All neurofilament markers were increased in AD-MCI, AD dementia and non-AD dementia groups compared with controls. CSF NfL, CSF pNfH and plasma NfL showed high performance to discriminate AD at both MCI and dementia stages from control subjects [AUC (area under the curve) = 0.82–0.91]. Plasma pNfH displayed overall lower AUCs for discrimination between groups compared with CSF pNfH. Neurofilament markers showed similar moderate association with cognition. NfL levels displayed significant association with mediotemporal lobe atrophy and white matter lesions in the AD group. Our results suggest that CSF NfL and pNfH as well as plasma NfL levels display equivalent performance in both positive and differential AD diagnosis in memory clinic settings. In contrast to motoneuron disorders, plasma pNfH did not demonstrate added value as compared with plasma NfL.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy