SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parker Q.~A.) "

Sökning: WFRF:(Parker Q.~A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoja, T., et al. (författare)
  • Asymmetric metallicity patterns in the stellar velocity space with RAVE
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical abundances of stars encode information on their place and time of origin. Stars formed together in e.g. a cluster, should present chemical homogeneity. Also disk stars influenced by the effects of the bar and the spiral arms might have distinct chemical signatures depending on the type of orbit that they follow, e.g. from the inner versus outer regions of the Milky Way.Aims. We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood.Methods. We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane (upsilon(R), upsilon(phi)) with that of their symmetric counterparts (-upsilon(R), upsilon(phi)). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g. a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the bar and the spiral arms are weak.Results. We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric upsilon(R) regions. The typical differences in the median metallicity are of 0 : 05 dex with statistical significant of at least 95% confidence, and with values up to 0 : 6 dex. For stars with low azimuthal velocity v(phi), the ones moving outwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher v(phi), the stars moving inwards have higher metallicity than those moving outwards. We have also discovered a positive gradient in v(phi) with resp ect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks.Conclusions. The most likely interpretation of the metallicity asymmetry is that it is mainly due to the orbital effects of the Galactic bar and the radial metallicity gradient of the disk. We present a simulation that supports this idea.
  •  
2.
  • Carrillo, I., et al. (författare)
  • Is the Milky Way still breathing? RAVE-Gaia streaming motions
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:2, s. 2679-2696
  • Tidskriftsartikel (refereegranskat)abstract
    • We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (V-R), azimuthal (V-phi), and vertical (V-z) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc midplane, as well as how each component of V-z (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in V-R and V-z. Below the plane, we find the largest radial gradient to be partial derivative V-R/partial derivative R = -7.01 +/- 0.61 km s(-1) kpc(-1), in agreement with recent studies. Above the plane, we find a similar gradient with partial derivative V-R/partial derivative R = -9.42 +/- 1.77 km s(-1) kpc(-1). By comparing our results with previous studies, we find that the structure in V-z is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.
  •  
3.
  • Hawkins, K., et al. (författare)
  • Characterizing the high-velocity stars of RAVE: the discovery of a metal-rich halo star born in the Galactic disc
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 447:2, s. 2046-2058
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s(-1). With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [alpha/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star candidate, an extremely HiVel bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disc. High-resolution spectra were obtained for the metal-rich HiVel star candidate and the second highest velocity star in the sample. Using these high-resolution data, we report the discovery of a metal-rich halo star that has likely been dynamically ejected into the halo from the Galactic thick disc. This discovery could aid in explaining the assembly of the most metal-rich component of the Galactic halo.
  •  
4.
  • Jofré, P., et al. (författare)
  • Climbing the cosmic ladder with stellar twins in RAVE with Gaia
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 472:3, s. 2517-2533
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply the twin method to determine parallaxes to 232 545 stars of the RAVE survey using the parallaxes of Gaia DR1 as a reference. To search for twins in this large data set, we apply the t-student stochastic neighbour embedding projection that distributes the data according to their spectral morphology on a two-dimensional map. From this map, we choose the twin candidates for which we calculate a χ2 to select the best sets of twins. Our results show a competitive performance when compared to other model-dependent methods relying on stellar parameters and isochrones. The power of the method is shown by finding that the accuracy of our results is not significantly affected if the stars are normal or peculiar since the method is model free. We find twins for 60 per cent of the RAVE sample that are not contained in Tycho-Gaia Astrometric Solution (TGAS) or that have TGAS uncertainties that are larger than 20 per cent. We could determine parallaxes with typical errors of 28 per cent. We provide a complementary data set for the RAVE stars not covered by TGAS, or that have TGAS uncertainties which are larger than 20 per cent, with model-free parallaxes scaled to the Gaia measurements.
  •  
5.
  •  
6.
  •  
7.
  • Valentini, M, et al. (författare)
  • RAVE stars in K2 : I. Improving RAVE red giants spectroscopy using asteroseismology from K2 Campaign 1
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of 87 RAVE stars with detected solar like oscillations, observed during Campaign 1 of the K2 mission (RAVE K2-C1 sample). This data set provides a useful benchmark for testing the gravities provided in RAVE data release 4 (DR4), and is key for the calibration of the RAVE data release 5 (DR5). The RAVE survey collected medium-resolution spectra (R = 7500) centred in the Ca II triplet(8600 Å) wavelength interval, which although being very useful for determining radial velocity and metallicity, even at low S/N, is known be affected by a log (g)-Teff degeneracy. This degeneracy is the cause of the large spread in the RAVE DR4 gravities for giants. The understanding of the trends and offsets that affects RAVE atmospheric parameters, and in particular log (g), is a crucial step in obtaining not only improved abundance measurements, but also improved distances and ages. In the present work, we use two different pipelines, GAUFRE and Sp-Ace, to determine atmospheric parameters and abundances by fixing log (g) to the seismic one. Our strategy ensures highly consistent values among all stellar parameters, leading to more accurate chemical abundances. A comparison of the chemical abundances obtained here with and without the use of seismic log (g) information has shown that an underestimated (overestimated) gravity leads to an underestimated (overestimated) elemental abundance (e.g. [Mg/H] is underestimated by ∼0.25 dex when the gravity is underestimated by 0.5 dex). We then perform a comparison between the seismic gravities and the spectroscopic gravities presented in the RAVE DR4 catalogue, extracting a calibration for log (g) of RAVE giants in the colour interval 0.50 < (J-KS) < 0.85. Finally, we show a comparison of the distances, temperatures, extinctions (and ages) derived here for our RAVE K2-C1 sample with those derived in RAVE DR4 and DR5. DR5 performs better than DR4 thanks to the seismic calibration, although discrepancies can still be important for objects for which the difference between DR4/DR5 and seismic gravities differ by more than ∼0.5 dex. The method illustrated in this work will be used for analysing RAVE targets present in the other K2 campaigns, in the framework of Galactic Archaeology investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy