SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parkkonen Maija) "

Sökning: WFRF:(Parkkonen Maija)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lahermo, P, et al. (författare)
  • A quality assessment survey of SNP genotyping laboratories
  • 2006
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 27:7, s. 711-714
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To survey the quality of SNP genotyping, a joint Nordic quality assessment (QA) round was organized between 11 laboratories in the Nordic and Baltic countries. The QA round involved blinded genotyping of 47 DNA samples for 18 or six randomly selected SNPs. The methods used by the participating laboratories included all major platforms for small- to medium-size SNP genotyping. The laboratories used their standard procedures for SNP assay design, genotyping, and quality control. Based on the joint results from all laboratories, a consensus genotype for each DNA sample and SNP was determined by the coordinator of the survey, and the results from each laboratory were compared to this genotype. The overall genotyping accuracy achieved in the survey was excellent. Six laboratories delivered genotype data that were in full agreement with the consensus genotype. The average accuracy per SNP varied from 99.1 to 100% between the laboratories, and it was frequently 100% for the majority of the assays for which SNP genotypes were reported. Lessons from the survey are that special attention should be given to the quality of the DNA samples prior to genotyping, and that a conservative approach for calling the genotypes should be used to achieve a high accuracy.
  •  
2.
  • Möllsten, Anna, et al. (författare)
  • A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:1, s. 265-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress has been suggested to contribute to the development of diabetic nephropathy. Manganese superoxide dismutase (MnSOD) protects the cells from oxidative damage by scavenging free radicals. The demand for antioxidants is increased by smoking, which could disturb the balance between antioxidants and radicals. The present study aimed to determine whether a valine/alanine polymorphism in MnSOD (V16A, rs4880), alone or in combination with smoking, can contribute to development of diabetic nephropathy in 1,510 Finnish and Swedish patients with type 1 diabetes. Overt diabetic nephropathy (n = 619) was defined as having an albumin excretion rate (AER) >200 microg/min or renal replacement therapy; incipient diabetic nephropathy was defined as having an AER of 20-200 microg/min (n = 336). The control subjects had diabetes duration of >or=20 years, without albuminuria (AER <20 microg/min) and without antihypertensive treatment (n = 555). In addition to male sex and elevated A1C, smoking was significantly associated with diabetic nephropathy (overt plus incipient), odds ratio (OR) 2.00 (95% CI 1.60-2.50). When controlling for age at onset, diabetes duration, A1C, smoking, and sex, the Val/Val genotype was associated with an increase in risk of diabetic nephropathy (1.32 [1.00-1.74], P = 0.049). When evaluating the combined effect of genotype and smoking, we used logistic regression with stratification according to smoking status and genotype. The high-risk group (ever smoking plus Val/Val genotype) had 2.52 times increased risk of diabetic nephropathy (95% CI 1.73-3.69) compared with the low-risk group, but no departure from additivity was found. Our results indicate that smoking and homozygosity for the MnSOD Val allele is associated with an increased risk of diabetic nephropathy, which supports the hypothesis that oxidative stress contributes to the development of diabetic nephropathy.
  •  
3.
  • Möllsten, Anna, et al. (författare)
  • A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women.
  • 2011
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier. - 1096-7192 .- 1096-7206. ; 103:1, s. 66-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The etiology of diabetic nephropathy depends partly on genetic factors. Elevated systemic and intraglomerular blood pressure and glomerular filtration rate, partly regulated by the renin–angiotensin system, increase the risk of diabetic nephropathy. Methods The present case–control study investigated the association of the rs5186 polymorphism, in the angiotensin II type 1 receptor gene (AGTR1), with diabetic nephropathy. The study included 3561 patients with type 1 diabetes from Denmark, Finland, France and Sweden. Microalbuminuria was defined as albumin excretion rate (AER) ≥ 20 to < 200 μg/min or albumin concentration ≥ 30 to < 300 mg/l (n = 707), macroalbuminuria was defined as AER ≥ 200 μg/min or ≥ 300 mg/l (n = 1546), and patients with renal replacement therapy were also included in this group. The controls had > 15 years diabetes duration, AER < 20 μg/min or < 30 mg/l, and no antihypertensive treatment (n = 1308). Results AA genotype of the rs5186 polymorphism significantly increased the risk of diabetic nephropathy in male patients, OR = 1.27 (95% CI = 1.02–1.58), P = 0.03, adjusted for age at diabetes onset, HbA1c, diabetes duration, smoking and country of origin. Among the women, there were no significant associations between rs5186 and diabetic nephropathy, OR = 0.89 (0.71–1.11), P = 0.30. Conclusion We conclude that the AGTR1 gene may be associated with increased risk of diabetic nephropathy in men with type 1 diabetes.
  •  
4.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes
  • 2014
  • Ingår i: Diabetologia. - Berlin Heidelberg : Springer-Verlag. - 0012-186X .- 1432-0428. ; 57:6, s. 1143-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.METHODS: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10(-4) were followed up in 3,750 additional patients withtype 1 diabetes from seven studies.RESULTS: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10(-8)). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic associationobserved at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.CONCLUSIONS/INTERPRETATION: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
  •  
5.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
6.
  • Sandholm, Niina, et al. (författare)
  • The genetic landscape of renal complications in type 1 diabetes
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 28:2, s. 557-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4310-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associatedvariants.Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2310-5) and the risk of type 2 diabetes (P=6.1310-4) associated with the risk of diabetic kidney disease.Wealso found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1310-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0310-6), and pentose and glucuronate interconversions (P=3.0310-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy