SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paschmann G) "

Sökning: WFRF:(Paschmann G)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvelius, S., et al. (författare)
  • Statistical study of relationships between dayside high-altitude and high-latitude O+ ion outflows, solar winds, and geomagnetic activity
  • 2005
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 23, s. 1909-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region.
  •  
2.
  •  
3.
  •  
4.
  • KLETZING, CA, et al. (författare)
  • Electric-fields derived from electron-drift measurements
  • 1994
  • Ingår i: GEOPHYSICAL RESEARCH LETTERS. - : American Geophysical Union (AGU). - 0094-8276. ; 21:17, s. 1863-1866
  • Tidskriftsartikel (refereegranskat)abstract
    • The first observations of electric fields derived from electron E x B drift measurements aboard the Freja spacecraft are presented. The instrument injects a weak beam of 3 keV electrons and measures the displacement of the returning electrons after one gyroperiod. After removing effects due to beam-detector geometry and applying an empirical calibration based upon comparison with the computed v x B electric field induced by the spacecraft motion, good agreement is found when the electron drift measurements are compared with the electric field components measured by the double probe experiment. Examples are presented in which moderately large electric fields are observed near the edges of or adjacent to electron precipitation regions with little or no electric field within.
  •  
5.
  •  
6.
  • Pedersen, A., et al. (författare)
  • Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions
  • 2008
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 113:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • Spacecraft potential measurements by the EFW electric field experiment on the Cluster satellites can be used to obtain plasma density estimates in regions barely accessible to other type of plasma experiments. Direct calibrations of the plasma density as a function of the measured potential difference between the spacecraft and the probes can be carried out in the solar wind, the magnetosheath, and the plasmashere by the use of CIS ion density and WHISPER electron density measurements. The spacecraft photoelectron characteristic ( photoelectrons escaping to the plasma in current balance with collected ambient electrons) can be calculated from knowledge of the electron current to the spacecraft based on plasma density and electron temperature data from the above mentioned experiments and can be extended to more positive spacecraft potentials by CIS ion and the PEACE electron experiments in the plasma sheet. This characteristic enables determination of the electron density as a function of spacecraft potential over the polar caps and in the lobes of the magnetosphere, regions where other experiments on Cluster have intrinsic limitations. Data from 2001 to 2006 reveal that the photoelectron characteristics of the Cluster spacecraft as well as the electric field probes vary with the solar cycle and solar activity. The consequences for plasma density measurements are addressed. Typical examples are presented to demonstrate the use of this technique in a polar cap/lobe plasma.
  •  
7.
  • Pedersen, A., et al. (författare)
  • Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spacecraft potential measurements by the EFW electric field experiment on the Cluster satellites can be used to obtain plasma density estimates in regions barely accessible to other type of plasma experiments. Direct calibrations of the plasma density as a function of the measured potential difference between the spacecraft and the probes can be carried out in the solar wind, the magnetosheath, and the plasmashere by the use of CIS ion density and WHISPER electron density measurements. The spacecraft photoelectron characteristic ( photoelectrons escaping to the plasma in current balance with collected ambient electrons) can be calculated from knowledge of the electron current to the spacecraft based on plasma density and electron temperature data from the above mentioned experiments and can be extended to more positive spacecraft potentials by CIS ion and the PEACE electron experiments in the plasma sheet. This characteristic enables determination of the electron density as a function of spacecraft potential over the polar caps and in the lobes of the magnetosphere, regions where other experiments on Cluster have intrinsic limitations. Data from 2001 to 2006 reveal that the photoelectron characteristics of the Cluster spacecraft as well as the electric field probes vary with the solar cycle and solar activity. The consequences for plasma density measurements are addressed. Typical examples are presented to demonstrate the use of this technique in a polar cap/lobe plasma.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy