SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pastor Ada) "

Sökning: WFRF:(Pastor Ada)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attermeyer, Katrin, et al. (författare)
  • Carbon dioxide fluxes increase from day to night across European streams
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1mmolm(-2) h(-1) at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams. Diel patterns can greatly impact total stream carbon dioxide emissions, with 39% greater carbon dioxide flux during the night-time relative to the day-time, according to a study of 34 streams across Europe.
  •  
2.
  • Bravo, Andrea G., et al. (författare)
  • The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems : A latitudinal study across Europe
  • 2018
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 144, s. 172-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64°N. THg concentrations (0.06–2.78 ng L−1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8–159 pg L−1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.
  •  
3.
  • Bravo, Andrea G., et al. (författare)
  • The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems : A latitudinal study across Europe
  • 2018
  • Ingår i: Water Research. - : Pergamon. - 0043-1354 .- 1879-2448. ; 144, s. 172-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06–2.78 ng L−1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8–159 pg L−1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.
  •  
4.
  • Catalan, Nuria, et al. (författare)
  • The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:2, s. 306-320
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) composition exerts a direct control on its degradation and subsequent persistence in aquatic ecosystems. Yet, under certain conditions, the degradation patterns of DOM cannot be solely explained by its composition, highlighting the relevance of environmental conditions for DOM degradation. Here, we experimentally assessed the relative influence of composition vs. environment on DOM degradation by performing degradation bioassays using three contrasting DOM sources inoculated with a standardized bacterial inoculum under five distinct environments. The DOM degradation kinetics modeled using reactivity continuum models showed that composition was more important than environment in determining the bulk DOM decay patterns. Changes in DOM composition resulted from the interaction between DOM source and environment. The role of environment was stronger on shaping the bacterial community composition, but the intrinsic nature of the DOM source exerted stronger control on the DOM degradation function.
  •  
5.
  • Pastor, Ada, et al. (författare)
  • Local and regional drivers of headwater streams metabolism : insights from the first AIL collaborative project
  • 2017
  • Ingår i: LIMNETICA. - : Asociacion Iberica de Limnologia. - 0213-8409 .- 1989-1806. ; 36:1, s. 67-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams play a key role in the global biogeochemical cycles, processing material from adjacent terrestrial systems and transporting it downstream. However, the drivers of stream metabolism, especially those acting at broad spatial scales, are still not well understood. Moreover, stream metabolism can be affected by hydrological changes associated with seasonality, and thus, assessing the temporality of metabolic rates is a key question to understand stream function. This study aims to analyse the geographical and temporal patterns in stream metabolism and to identify the main drivers regulating the whole ecosystem metabolic rates at local and regional scales. Using a coordinated distributed experiment, we studied ten headwaters streams located across five European ecoregions during summer and fall 2014. We characterized the magnitude and variability of gross primary production (GPP) and ecosystem respiration (ER) with the open-channel method. Moreover, we examined several climatic, geographical, hydrological, morphological, and physicochemical variables that can potentially control stream metabolic rates. Daily rates of stream metabolism varied considerately across streams, with GPP and ER ranging from 0.06 to 4.33 g O-2 m(-2) d(-1) and from 0.72 to 14.20 g O-2 m(-2) d(-1), respectively. All streams were highly heterotrophic (P/R < 1), except the southernmost one. We found that the drier climates tended to have the highest GPP, while humid regions presented the highest ER. Between the sampling periods no statistical differences were found. Partial-least squares models (PLS) explained similar to 80% of the variance in GPP and ER rates across headwater streams and included both local and regional variables. Rates of GPP varied primarily in response to the local variables, such as streambed substrate and stream water temperature. In contrast, regional variables, such as the mean annual temperature or the land use of the catchment, had more relevance to explain ER. Overall, our results highlight that stream metabolism depends on both local and regional drivers and show the positive experience of a young network of researchers to assess scientific challenges across large-scale geographic areas.
  •  
6.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of coarse detritus (e.g., dead organic matter larger than ~1 mm such as leaf litter or animal carcasses) in freshwater ecosystems is well described in terms of mass loss, particularly as rates that compress mass loss into one number (e.g., a first-order decay coefficient, or breakdown rate, “k”); less described are temporal changes in the elemental composition of these materials during decomposition, with important implications for elemental cycling from microbes to ecosystems. This stands in contrast with work in the terrestrial realm, where a focus on detrital elemental cycling has provided a sharper mechanistic understanding of decomposition, especially with specific processes such as immobilization and mineralization. Notably, freshwater ecologists often measure carbon (C), nitrogen (N), and phosphorus (P), and their stoichiometric ratios in decomposing coarse materials, including carcasses, wood, leaf litter, and more, but these measurements remain piecemeal. These detrital nutrients are measurements of the entire detrital–microbial complex and are integrative of numerous processes, especially nutrient immobilization and mineralization, and associated microbial growth and death. Thus, data relevant to an elemental, mechanistically focused decomposition ecology are available in freshwaters, but have not been fully applied to that purpose. We synthesized published detrital nutrient and stoichiometry measurements at a global scale, yielding 4038 observations comprising 810 decomposition time series (i.e., measurements within a defined cohort of decomposing material through time) to build a basis for understanding the temporality of elemental content in freshwater detritus. Specifically, the dataset focuses on temporally and ontogenetically (mass loss) explicit measurements of N, P, and stoichiometry (C:N, C:P, N:P). We also collected ancillary data, including detrital characteristics (e.g., species, lignin content), water physiochemistry, geographic location, incubation system type, and methodological variables (e.g., bag mesh size). These measurements are important to unlocking mechanistic insights into detrital ontogeny (the temporal trajectory of decomposing materials) that can provide a deeper understanding of heterotroph-driven C and nutrient cycling in freshwaters. Moreover, these data can help to bridge aquatic and terrestrial decomposition ecology, across plant or animal origin. By focusing on temporal trajectories of elements, this dataset facilitates cross-ecosystem comparisons of fundamental decomposition controls on elemental fluxes. It provides a strong starting point (e.g., via modeling efforts) for comparing processes such as immobilization and mineralization that are understudied in freshwaters. Time series from decomposing leaf litter, particularly in streams, are common in the dataset, but we also synthesized ontogenies of animal-based detritus, which tend to decompose rapidly compared with plant-based detritus that contains high concentrations of structural compounds such as lignin and cellulose. Although animal-based data were rare, comprising only three time series, their inclusion in this dataset underscores the opportunities to develop an understanding of decomposition that encompasses all detrital types, from carrion to leaf litter. There are no copyright or proprietary restrictions on the dataset; please cite this data paper when reusing these materials.
  •  
7.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems : a global synthesis
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposing organic matter forms a substantial resource base, fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic ecosystems relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment, regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by the initial P content, in which P-poor litters were sinks for nutrients until these shifted to net P mineralization after ~40% mass loss. However, large variations surrounded both the N and P predictions, suggesting the importance of nonmicrobial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of the decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. The explorations of environmental covariate effects were frequently limited by a few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate the existing ontogenetic patterns in C:N. Our analysis helps to unite organic matter decomposition across aquatic–terrestrial boundaries by describing the basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda with which to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems.
  •  
8.
  • Sanchez-Montoya, Maria Mar, et al. (författare)
  • Women in limnology in the Iberian Peninsula : biases, barriers and recommendations
  • 2016
  • Ingår i: LIMNETICA. - 0213-8409. ; 35:1, s. 61-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Gender biases in science have received increasing attention in recent years. Underrepresentation at the highest academic levels and bias in publication are some of the factors affecting women in science. In this study, we assessed the situation of women in Limnology, a specific field of natural sciences, within the geographic context of the Iberian Peninsula. We used a multi-faceted approach to diagnose the situation, and we propose guidelines to reduce gender gaps in Limnology. The database of members of the Iberian Limological Association (AIL) was used to analyse the. variability between genders at different professional stages. Data was also compiled on plenary speakers who attended conferences organized by different associations (AIL, SEFS and ASLO) to assess women's visibility. A published data set was used to identify leadership patterns in publications with respect to gender. Finally, a survey of AIL members was conducted to understand their perception of the barriers in science that result in differences between the genders. This study recognized differences at the recruitment level (more tenured positions are held by men), visibility at conferences (fewer women are invited as plenary speakers) and publication as team leaders (men have more publications as first and last authors). Survey participants recognised the scarcity of grants/funding, difficulties in balancing life and career, and the scarcity of job opportunities as the three main barriers in science, regardless of gender. Yet, women identified family-related barriers such as having children and gender biases more frequently. Overall, our study indicates that there is a general gender bias in the field of Limnology in the Iberian Peninsula; however, it is slightly lower than the reported levels in Europe and for other disciplines in Spain. Finally, we provide a list of recommendations to balance the current biases based on suggestions made by the participants of a round table held at the XVII Congress of the AIL (Santander, July 2014). We encourage associations in natural sciences and the AIL in particular to use this study as a guideline for best practices as well as a baseline for future analysis of gender biases.
  •  
9.
  •  
10.
  • Wagenhoff, Annika, et al. (författare)
  • Thresholds in ecosystem structural and functional responses to agricultural stressors can inform limit setting in streams
  • 2017
  • Ingår i: Freshwater Science. - : University of Chicago Press. - 2161-9549 .- 2161-9565. ; 36:1, s. 178-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Setting numeric in-stream objectives (limits, criteria) to inform limits on catchment loads for major land use stressors is a promising policy instrument to prevent ecosystem degradation. Management objectives can be informed by thresholds identified from stressor response shapes of ecological indicators based on field survey data. Use of multiple structural and functional indicators and different organism groups provides multiple lines of evidence to make objectives more robust. We measured a suite of ecological indicators during a regional field survey in New Zealand. We built flexible boosted regression tree (BRT) models with a predictor set consisting of nutrient, sediment, and environmental variables and investigated the fitted functions for different types of thresholds across each stressor gradient. Congruence of impact initiation (II) thresholds for N among macroinvertebrate metrics and 2 periphyton indicators provided multiple lines of evidence for ecosystem change with small increases in N concentrations above background levels. Impact cessation (IC) on macroinvertebrate metrics at total N = 0.5 mg/L (below N concentrations that saturate important ecosystem processes) highlighted sensitivity of macroinvertebrate communities to eutrophication. We found few stressor response relationships for sediment. We suggest use of sediment-specific macroinvertebrate metrics and a reliable measure of deposited fine sediment in the future. Few indicators responded to phosphorus (P) concentration. Limited information for setting P objectives highlights the need to develop alternative indicators of P loading. Statistical analysis based on single-stressor inferential threshold models suggested that these models carry high risk of identifying spurious thresholds and are less suitable for setting management objectives. II and IC thresholds of multiple ecological indicators can be used to set robust objectives aimed at different levels of protection of ecosystem health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy