SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pausata Francesco S. R.) "

Sökning: WFRF:(Pausata Francesco S. R.)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jasechko, S., et al. (författare)
  • Late-glacial to late-Holocene shifts in global precipitation delta O-18
  • 2015
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 11:10, s. 1375-1393
  • Tidskriftsartikel (refereegranskat)abstract
    • Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta O-18. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as similar to 50 000 to similar to 20 000 years ago) to the late-Holocene (within the past similar to 5000 years). We show that precipitation delta O-18 changes from the late-glacial to the late-Holocene range from -7.1% (delta O-18(late-Holocene) > delta O-18(late-glacial)) to + 1.7% (delta O-18(late-glacial) > delta O-18(late-Holocene)), with the majority (77 %) of records having lower late-glacial delta O-18 than late-Holocene delta O-18 values. High-magnitude, negative precipitation delta O-18 shifts are common at high latitudes, high altitudes and continental interiors (delta O-18(late-Holocene) > delta O-18(late-glacial) by more than 3 %). Conversely, low-magnitude, positive precipitation delta O-18 shifts are concentrated along tropical and subtropical coasts (delta O-18(late-glacial) > delta O-18(late-Holocene) by less than 2 %). Broad, global patterns of late-glacial to late-Holocene precipitation delta O-18 shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation delta O-18 shifts, we compiled simulated precipitation delta O-18 shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better intermodel and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater delta O-18 and glacial topography parameterizations impact simulated precipitation delta O-18. Future research on paleo-precipitation delta O-18 records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.
  •  
2.
  • Muschitiello, Francesco, et al. (författare)
  • Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (similar to 13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snow-pack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.
  •  
3.
  • Muschitiello, Francesco, et al. (författare)
  • Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, similar to 12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting similar to 180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.
  •  
4.
  • Pausata, Francesco S. R., et al. (författare)
  • ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere : The role of the initial conditions
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:16, s. 8694-8702
  • Tidskriftsartikel (refereegranskat)abstract
    • A large ensemble of Earth System Model simulations is analyzed to show that high-latitude Northern Hemisphere eruptions give rise to El Nino-like anomalies in the winter following the eruption, the amplitude of which depends on the state of the tropical Pacific at the time of the eruption. The El Nino-like anomalies are almost three times larger when the eruption occurs during an incipient La Nina or during a neutral state compared to an incipient El Nino. The differential response results from stronger atmosphere-ocean coupling and extra-tropical feedbacks during an incipient La Nina compared to El Nino. Differences in the response continue through the second and third years following the eruption. When the eruption happens in a year of an incipient El Nino, a large cold (La Nina-like) anomaly develops in year 2; if the eruption occurs in a year of an incipient La Nina, no anomalies are simulated in year 2 and a La Nina-like response appears in year 3. After the El Nino-like anomaly in the first winter, the overall tendency of ENSO in the following 2years is toward a La Nina state. Our results highlight the high sensitivity of tropical Pacific dynamics under volcanic forcing to the ENSO initial state and lay the groundwork for improved predictions of the global climatic response to high-latitude volcanic eruptions.
  •  
5.
  • Pausata, Francesco S. R., et al. (författare)
  • Greening of the Sahara suppressed ENSO activity during the mid-Holocene
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of the El Nino-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.
  •  
6.
  • Pausata, Francesco S. R., et al. (författare)
  • Impacts of high-latitude volcanic eruptions on ENSO and AMOC
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:45, s. 13784-13788
  • Tidskriftsartikel (refereegranskat)abstract
    • Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Nino-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Nino-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Nino-Southern Oscillation (ENSO).
  •  
7.
  • Pausata, Francesco S. R., et al. (författare)
  • ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms through which volcanic eruptions affect the El Nino-Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism, and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth system model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of posteruption El Nino events and for the occasional posteruption La Nina in observations and reconstructions.
  •  
8.
  • Pausata, Francesco S. R., et al. (författare)
  • Revisiting the Mechanisms of ENSO Response to Tropical Volcanic Eruptions
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric volcanic aerosol can have major impacts on global climate. Despite a consensus among studies on an El Niño-like response in the first or second post-eruption year, the mechanisms that trigger a change in the state of El Niño-Southern Oscillation (ENSO) following volcanic eruptions are still debated. Here, we shed light on the processes that govern the ENSO response to tropical volcanic eruptions through a series of sensitivity experiments with an Earth System Model where a uniform stratospheric volcanic aerosol loading is imposed over different parts of the tropics. Three tropical mechanisms are tested: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). We find that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as La Niña-like rather than El-Niño-like conditions develop following a uniform radiative forcing over the equatorial Pacific.
  •  
9.
  • Winter, Amos, et al. (författare)
  • Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales.
  •  
10.
  • Zanchettin, Davide, et al. (författare)
  • The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6
  • 2016
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 9:8, s. 2701-2719
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
  •  
11.
  • Acosta Navarro, Juan C., et al. (författare)
  • Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:3, s. 939-954
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-2049, a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 K and 0.84 K, respectively; as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a non-significant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the RCP4.5 emission scenario leads to a global and Arctic warming of 0.35 K and 0.94 K, respectively.The model yields a marked annual average northward shift in the inter-tropical convergence zone with decreasing aerosol emissions and subsequent warming of the northern hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres and there is no marked shift in the annual average position of the inter-tropical convergence zone. The strong reduction in aerosol emissions in MFR also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast and East Asia causing an increase in precipitation over a large part of this region.
  •  
12.
  • Aichner, Bernhard, et al. (författare)
  • Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since the Last Glacial Period
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:23, s. 13972-13983
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.
  •  
13.
  • Chiacchio, Marc, et al. (författare)
  • On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins
  • 2017
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 122:2, s. 802-822
  • Tidskriftsartikel (refereegranskat)abstract
    • A generalized linear model based on Poisson regression has been used to assess the impact of environmental variables modulating tropical cyclone frequency in six main cyclone development areas: the East Pacific, West Pacific, North Atlantic, North Indian, South Indian, and South Pacific. The analysis covers the period 1980-2009 and focuses on widely used meteorological parameters including wind shear, sea surface temperature, and relative humidity from different reanalyses as well as aerosol optical depth for different compounds simulated by the Goddard Chemistry Aerosol Radiation and Transport model. Circulation indices are also included. Cyclone frequency is obtained from the International Best Track Archive for Climate Stewardship. A strong link is found between cyclone frequency and the relative sea surface temperature, Atlantic Meridional Mode, and wind shear with significant explained log likelihoods in the North Atlantic of 37%, 27%, and 28%, respectively. A significant impact of black carbon and organic aerosols on cyclone frequency is found over the North Indian Ocean, with explained log likelihoods of 27%. A weaker but still significant impact is found for observed dust aerosols in the North Atlantic with an explained log likelihood of 11%. Changes in lower stratospheric temperatures explain 28% of the log likelihood in the North Atlantic. Lower stratospheric temperatures from a subset of Coupled Model Intercomparison Project Phase 5 models properly simulate the warming and subsequent cooling of the lower stratosphere that follows a volcanic eruption but underestimates the cooling by about 0.5 degrees C.
  •  
14.
  • Gaetani, Marco, et al. (författare)
  • Understanding the Mechanisms behind the Northward Extension of the West African Monsoon during the Mid-Holocene
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:19, s. 7621-7642
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modeling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy may be largely due to the assumption of both unrealistic land surface cover and atmospheric aerosol concentration. In this study, the MH environment is simulated in numerical experiments by imposing extensive vegetation over the Sahara and the consequent reduction in airborne dust concentration. A dramatic increase in precipitation is simulated across the whole of West Africa, up to the Mediterranean coast. This precipitation response is in better agreement with proxy data, in comparison with the case in which only changes in orbital forcing are considered. Results show a substantial modification of the monsoonal circulation, characterized by an intensification of large-scale deep convection through the entire Sahara, and a weakening and northward shift (similar to 6.5 degrees) of the African easterly jet. The greening of the Sahara also leads to a substantial reduction in the African easterly wave activity and associated precipitation. The reorganization of the regional atmospheric circulation is driven by the vegetation effect on radiative forcing and associated heat fluxes, with the reduction in dust concentration to enhance this response. The results for the WAM in the MH present important implications for understanding future climate scenarios in the region and in teleconnected areas, in the context of projected wetter conditions in West Africa.
  •  
15.
  • Harrison, Sandy P., et al. (författare)
  • Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus Gesellschaft MBH. - 1991-959X .- 1991-9603. ; 13:2, s. 805-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic changes in land use and land cover (LULC) during the pre-industrial Holocene could have affected regional and global climate. Existing scenarios of LULC changes during the Holocene are based on relatively simple assumptions and highly uncertain estimates of population changes through time. Archaeological and palaeoenvironmental reconstructions have the potential to refine these assumptions and estimates. The Past Global Changes (PAGES) LandCover6k initiative is working towards improved reconstructions of LULC globally. In this paper, we document the types of archaeological data that are being collated and how they will be used to improve LULC reconstructions. Given the large methodological uncertainties involved, both in reconstructing LULC from the archaeological data and in implementing these reconstructions into global scenarios of LULC, we propose a protocol to evaluate the revised scenarios using independent pollen-based reconstructions of land cover and climate. Further evaluation of the revised scenarios involves carbon cycle model simulations to determine whether the LULC reconstructions are consistent with constraints provided by ice core records of CO2 evolution and modern-day LULC. Finally, the protocol outlines how the improved LULC reconstructions will be used in palaeoclimate simulations in the Palaeoclimate Modelling Intercomparison Project to quantify the magnitude of anthropogenic impacts on climate through time and ultimately to improve the realism of Holocene climate simulations.
  •  
16.
  • Maldonado, Tito, et al. (författare)
  • The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet
  • 2017
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 122:11, s. 5903-5916
  • Tidskriftsartikel (refereegranskat)abstract
    • The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.
  •  
17.
  • Messori, Gabriele, et al. (författare)
  • On the low-frequency variability of wintertime Euro-Atlantic planetary wave-breaking
  • 2019
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 52:3-4, s. 2431-2450
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary wave-breaking can lead to large-scale atmospheric circulation anomalies and favour high-impact weather occurrences. For example, the simultaneous occurrence of anti-cyclonic wave-breaking to the south of the North Atlantic jet and cyclonic wave-breaking to the north, here termed double wave-breaking, has been linked to heightened frequencies of explosive cyclones in the Atlantic basin and destructive windstorms over Western and Continental Europe. The present study analyses the long-term temporal variability of wintertime cyclonic and anti-cyclonic wave-breaking, and the resulting double wave-breaking, in the North Atlantic. We use reanalysis data, proxy reconstructions of the North Atlantic Oscillation (NAO) and a 1000-year coupled global climate model equilibrium simulation under constant pre-industrial forcing. The wave-breaking wavelet spectra highlight a significant ultra-centennial variability in double wave-breaking frequency, which is largely mirrored in the variability of the NAO. However, we note that the NAO wavelet spectra in the different datasets display significant discrepancies. The low-frequency wave-breaking variability is reflected in long-term anomalies of the large-scale atmospheric circulation in the Euro-Atlantic sector. The 100-year periods with the most and least double wave-breaking occurrences display significant and opposite anomalies in both upper and lower-level wind, as well as in the frequency of extreme temperature events and in the magnitude of wind destructiveness over Europe. The latter broadly resembles the wind destructiveness anomalies associated with individual double wave-breaking instances in reanalysis data. The existence of low-frequency variability in an atmospheric pattern related to high-impact weather events has important implications for the study and interpretation of climate change projections and of possible future NAO changes.
  •  
18.
  • Messori, Gabriele, et al. (författare)
  • The impact of future atmospheric circulation changes over the Euro-Atlantic sector on urban PM2.5 concentrations
  • 2018
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 70:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Air quality management is strongly driven by legislative aspects related to the exceedance of air quality limit values. Here, we use the Norwegian Climate Centre's Earth System Model to assess the impact of a future scenario of maximum feasible aerosol emission abatement and increasing greenhouse gases (RCP4.5) on urban PM2.5 concentrations in Europe. Daily PM2.5 concentrations are assessed using a novel downscaling method which allows us to compute exceedances of current and planned air quality thresholds. For the latter, we assume that future ambitious emission reductions are likely to be accompanied by stricter air quality thresholds. The changes in PM2.5 concentrations are discussed in the context of the large-scale atmospheric changes observed relative to the present-day climate.Our results show a more positive North Atlantic Oscillation mean state in the future, combined with a large eastward shift of both North Atlantic sea-level pressure centres of action. This is associated with more frequent mid-latitude blocking and a northward shift of the jet stream. These changes favour higher than expected anthropogenic urban PM2.5 concentrations in Southern Europe, while they have the opposite effect on the northern half of the continent. In the future scenario, PM concentrations in substantial parts of Southern Europe are found to exceed the World Health Organisation Air Quality Guideline daily limit of 25g/m(3) on 25 to over 50days per year, and annual guidelines of 10 mu g/m(3) on more than 80% of the 30years analysed in our study. We conclude that alterations in atmospheric circulation in the future, induced by stringent maximum feasible air pollution mitigation as well as GHG emissions, will negatively influence the effectiveness of these emission abatements over large parts of Europe. This has important implications for future air quality policies.
  •  
19.
  • Messori, Gabriele, et al. (författare)
  • The water cycle of the mid-Holocene West African monsoon : The role of vegetation and dust emission changes
  • 2019
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418 .- 1097-0088. ; 39:4, s. 1927-1939
  • Tidskriftsartikel (refereegranskat)abstract
    • During the mid-Holocene (6 kyr BP), West Africa experienced a much stronger and geographically extensive monsoon than in the present day. Changes in orbital forcing, vegetation and dust emissions from the Sahara have been identified as key factors driving this intensification. Here, we analyse how the timing, origin and convergence of moisture fluxes contributing to the monsoonal precipitation change under a range of scenarios: orbital forcing only; orbital and vegetation forcings (Green Sahara); orbital, vegetation and dust forcings (Green Sahara-reduced dust). We further compare our results to a range of reconstructions of mid-Holocene precipitation from palaeoclimate archives. In our simulations, the greening of the Sahara leads to a cyclonic water vapour flux anomaly over North Africa with an anomalous westerly flow bringing large amounts of moisture into the Sahel from the Atlantic Ocean. Changes in atmospheric dust under a vegetated Sahara shift the anomalous moisture advection pattern northwards, increasing both moisture convergence and precipitation recycling over the northern Sahel and Sahara and the associated precipitation during the boreal summer. During this season, under both the Green Sahara and Green Sahara-reduced dust scenarios, local recycling in the Saharan domain exceeds that of the Sahel. This points to local recycling as an important factor modulating vegetation-precipitation feedbacks and the impact of Saharan dust emissions. Our results also show that temperature and evapotranspiration over the Sahara in the mid-Holocene are close to Sahelian pre-industrial values. This suggests that pollen-based paleoclimate reconstructions of precipitation during the Green Sahara period are likely not biased by possible large evapotranspiration changes in the region.
  •  
20.
  • Otto-Bliesner, Bette L., et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 2 : Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 3979-4003
  • Tidskriftsartikel (refereegranskat)abstract
    • Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.
  •  
21.
  • Pausata, Francesco S. R., et al. (författare)
  • Climate effects of a hypothetical regional nuclear war : Sensitivity to emission duration and particle composition
  • 2016
  • Ingår i: Earth's Future. - 2328-4277. ; 4:11, s. 498-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.
  •  
22.
  • Pausata, Francesco S. R., et al. (författare)
  • High-latitude volcanic eruptions in the Norwegian Earth System Model : the effect of different initial conditions and of the ensemble size
  • 2015
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 67
  • Tidskriftsartikel (refereegranskat)abstract
    • Large volcanic eruptions have strong impacts on both atmospheric and ocean dynamics that can last for decades. Numerical models have attempted to reproduce the effects of major volcanic eruptions on climate; however, there are remarkable inter-model disagreements related to both short-term dynamical response to volcanic forcing and long-term oceanic evolution. The lack of robust simulated behaviour is related to various aspects from model formulation to simulated background internal variability to the eruption details. Here, we use the Norwegian Earth System Model version 1 to calculate interactively the volcanic aerosol loading resulting from SO2 emissions of the second largest high-latitude volcanic eruption in historical time (the Laki eruption of 1783). We use two different approaches commonly used interchangeably in the literature to generate ensembles. The ensembles start from different background initial states, and we show that the two approaches are not identical on short-time scales (<1 yr) in discerning the volcanic effects on climate, depending on the background initial state in which the simulated eruption occurred. Our results also show that volcanic eruptions alter surface climate variability (in general increasing it) when aerosols are allowed to realistically interact with circulation: Simulations with fixed volcanic aerosol show no significant change in surface climate variability. Our simulations also highlight that the change in climate variability is not a linear function of the amount of the volcanic aerosol injected. We then provide a tentative estimation of the ensemble size needed to discern a given volcanic signal on surface temperature from the natural internal variability on regional scale: At least 20-25 members are necessary to significantly detect seasonally averaged anomalies of 0.5 degrees C; however, when focusing on North America and in winter, a higher number of ensemble members (35-40) is necessary.
  •  
23.
  • Pausata, Francesco S. R., et al. (författare)
  • Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period
  • 2016
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 434, s. 298-307
  • Tidskriftsartikel (refereegranskat)abstract
    • The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000-5000 yr BP, when increased summer rainfall led to the so-called Green Sahara and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation-albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene.
  •  
24.
  • Pausata, Francesco S. R., et al. (författare)
  • On the enigmatic similarity in Greenland delta O-18 between the Oldest and Younger Dryas
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The last deglaciation (20.0-10.0 kyr B.P.) was punctuated by two major cooling events affecting the Northern Hemisphere: the Oldest Dryas (OD; 18.0-14.7 kyr B.P.) and the Younger Dryas (YD; 12.8-11.5 kyr B.P.). Greenland ice core delta O-18 temperature reconstructions suggest that the YD was as cold as the OD, despite a 50 ppmv increase in atmospheric CO2, while modeling studies suggest that the YD was approximately 4-5 degrees C warmer than the OD. This discrepancy has been surmised to result from changes in the origin of the water vapor delivered to Greenland; however, this hypothesis has not been hitherto tested. Here we use an atmospheric circulation model with an embedded moisture-tracing module to investigate atmospheric processes that may have been responsible for the similar delta O-18 values during the OD and YD. Our results show that the summer-to-winter precipitation ratio over central Greenland in the OD is twice as high as in the YD experiment, which shifts the delta O-18 signal toward warmer (summer) temperatures (enriched delta O-18 values and it accounts for similar to 45% of the expected YD-OD delta O-18 difference). A change in the inversion (cloud) temperature relationship between the two climate states further contributes (similar to 20%) to altering the delta O-18-temperature-relation model. Our experiments also show a 7% decrease of delta O-18-depleted precipitation from distant regions (e.g., the Pacific Ocean) in the OD, hence further contributing (15-20%) in masking the actual temperature difference. All together, these changes provide a physical explanation for the ostensible similarity in the ice core delta O-18 temperature reconstructions in Greenland during OD and YD.
  •  
25.
  • Pausata, Francesco S. R., et al. (författare)
  • The Greening of the Sahara : Past Changes and Future Implications
  • 2020
  • Ingår i: One Earth. - : ELSEVIER. - 2590-3330 .- 2590-3322. ; 2:3, s. 235-250
  • Forskningsöversikt (refereegranskat)abstract
    • In the future, the Sahara and Sahelian regions could experience more rainfall than today as a result of climate change. Wetter periods, termed African humid periods, occurred in the past and witnessed a mesic landscape in place of today's hyperarid and semiarid environment. Such large past changes raise the question of whether the near future might hold in store similar environmental transformations, particularly in view of the growing human-induced climate, land-use, and land-cover changes. In the last decades, geoengineering initiatives (in the form of active re-greening projects of the Sahara and Sahel) have been proposed and could have significant effects on the climate of the region. Here, we synthesize the literature on past and projected changes in the hydroclimate of the Sahelian-Saharan region and the associated feedbacks. We further address the current state of knowledge concerning Saharan and Sahelian afforestation projects and their consequences. Our review underscores the importance of vegetation in land-atmosphere-ocean feedback processes and the far-field impacts of northern African ecosystem changes.
  •  
26.
  • Pausata, Francesco S. R., et al. (författare)
  • The remote response of the South Asian Monsoon to reduced dust emissions and Sahara greening during the middle Holocene
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:3, s. 1243-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies based on multiple paleoclimate archives suggested a prominent intensification of the South Asian Monsoon (SAM) during the mid-Holocene (MH, similar to 6000 years before present). The main forcing that contributed to this intensification is related to changes in the Earth's orbital parameters. Nonetheless, other key factors likely played important roles, including remote changes in vegetation cover and airborne dust emission. In particular, northern Africa also experienced much wetter conditions and a more mesic landscape than today during the MH (the so-called African Humid Period), leading to a large decrease in airborne dust globally. However, most modeling studies investigating the SAM changes during the Holocene overlooked the potential impacts of the vegetation and dust emission changes that took place over northern Africa. Here, we use a set of simulations for the MH climate, in which vegetation over the Sahara and reduced dust concentrations are considered. Our results show that SAM rainfall is strongly affected by Saharan vegetation and dust concentrations, with a large increase in particular over northwestern India and a lengthening of the monsoon season. We propose that this re- mote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
  •  
27.
  • Pausata, Francesco S. R., et al. (författare)
  • Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:24, s. 6221-6226
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleosediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
  •  
28.
  • Piao, Jinling, et al. (författare)
  • Northward extension of the East Asian summer monsoon during the mid-Holocene
  • 2020
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 184
  • Forskningsöversikt (refereegranskat)abstract
    • Previous studies based on multiple paleoclimate archives suggested that during the mid-Holocene (MH, similar to 6000 years before present day), the East Asian summer monsoon (EASM) had a prominent intensification and northward extension. However, current climate model simulations with orbital forcing alone present an underestimation of the magnitude of changes in the EASM. In the current work, we show that considering a vegetated and dust-reduced Sahara in the MH can significantly strengthen the EASM intensity and expand its northernmost boundary northward compared to the results with orbital forcing alone. The vegetation change over the Sahara is the dominant factor for the variation in the EASM, while the dust reduction plays a smaller role. The vegetated Sahara causes a westward shift of the Walker circulation, accompanied with enhancement of the western Pacific subtropical high (WPSH), which then results in a strengthened EASM. On one hand, the change in the Walker circulation induces decreased rainfall over the western equatorial Pacific, intensifying the WPSH through the Gill-Matsuno response. On the other hand, the shift in the Walker circulation is associated with a stronger local Hadley circulation, reinforcing the WPSH. Finally, our results show that the westward expansion of the WPSH is mainly caused by the local strengthening of the Hadley circulation.
  •  
29.
  • Salih, Abubakr A. M., et al. (författare)
  • Sources of Sahelian-Sudan moisture : Insights from a moisture-tracing atmospheric model
  • 2016
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 121:13, s. 7819-7832
  • Tidskriftsartikel (refereegranskat)abstract
    • The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.
  •  
30.
  • Sun, Weiyi, et al. (författare)
  • Northern Hemisphere Land Monsoon Precipitation Increased by the Green Sahara During Middle Holocene
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:16, s. 9870-9879
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in land cover and dust emission may significantly influence the Northern Hemisphere land monsoon precipitation (NHLMP), but observations are too short to fully evaluate their impacts. The Green Sahara during the mid-Holocene (6,000 years BP) provides an opportunity to unravel these mechanisms. Here we show that during the mid-Holocene, most of the NHLMP changes revealed by proxy data are reproduced by the Earth System model results when the Saharan vegetation cover and dust reduction are taken into consideration. The simulated NHLMP significantly increases by 33.10% under the effect of the Green Sahara. The North African monsoon precipitation increases most significantly. Additionally, the Saharan vegetation (dust reduction under vegetated Sahara) alone remotely intensifies the Asian (North American) monsoon precipitation through large-scale atmospheric circulation changes. These findings imply that future variations in land cover and dust emissions may appreciably influence the NHLMP. Plain Language Summary Northern Hemisphere land monsoon precipitation (NHLMP) provides water resources for about two thirds of the world's population, which is vital for infrastructure planning, disaster mitigation, food security, and economic development. Changes in land cover and dust emissions may significantly influence the NHLMP, but observations are too short to understand the mechanisms. The Sahara Desert was once covered by vegetation and dust emission was substantially reduced during the mid-Holocene (6,000 years BP), which provides an opportunity to test the models' capability and unravel these mechanisms. Here we use an Earth System model and find that when the Saharan vegetation and dust reduction are taken into consideration, the simulated annual mean precipitation over most of the NHLM regions shows a closer agreement with proxy records. The sensitivity experiments show that the North African monsoon precipitation increases most significantly under the regional effects of Green Sahara. The Saharan vegetation (dust reduction under vegetated Sahara) alone also remotely increases the Asian (North American) monsoon precipitation through large-scale atmospheric circulation changes. The knowledge gained from this study is critical for improved understanding of the potential impacts of the land cover and dust changes on the projected future monsoon change.
  •  
31.
  • Tierney, Jessica E., et al. (författare)
  • Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling
  • 2016
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 9:1, s. 46-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Indian monsoon, the largest monsoon system on Earth, responds to remote climatic forcings, including temperature changes in the North Atlantic(1,2). The monsoon was weak during two cool periods that punctuated the last deglaciation-Heinrich Stadial 1 and the Younger Dryas. It has been suggested that sea surface cooling in the Indian Ocean was the critical link between these North Atlantic stadials and monsoon failure(3); however, based on existing proxy records(4) it is unclear whether surface temperatures in the Indian Ocean and Arabian Sea dropped during these intervals. Here we compile new and existing temperature proxy data(4-7) from the Arabian Sea, and find that surface temperatures cooled whereas subsurface temperatures warmed during both Heinrich Stadial 1 and the Younger Dryas. Our analysis of model simulations shows that surface cooling weakens the monsoon winds and leads to destratification of the water column and substantial subsurface warming. We thus conclude that sea surface temperatures in the Indian Ocean are indeed the link between North Atlantic climate and the strength of the Indian monsoon.
  •  
32.
  • Tierney, Jessica E., et al. (författare)
  • Rainfall regimes of the Green Sahara
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the Green Sahara period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31 degrees N and likely ended abruptly. We find evidence for a prolonged pause in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy