SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedersen Jan Skov) "

Sökning: WFRF:(Pedersen Jan Skov)

  • Resultat 1-37 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Efthymiou, Christina, et al. (författare)
  • Self-assembling properties of ionisable amphiphilic drugs in aqueous solution
  • 2021
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 600, s. 701-710
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis: Common amphiphilic drug molecules often have a more rigid nonpolar part than conventional surfactants. The rigidity is expected to influence the self-assembling properties and possibly give rise to aggregation patterns different from that of regular surfactants.Experiments: We have investigated self-assembling properties of the hydrochloride salts of adiphenine (ADP), pavatrine (PVT), and amitriptyline (AMT) at concentrations up to 50 wt% using small-angle x-ray scattering, dynamic light scattering, cryo-transmission electron microscopy, and surface tension measurements.Findings: All drugs form small micelles of oblate spheroidal shape at concentrations above the critical micelle concentrations (CMC). The micelles grow weakly in size up to about 20 wt%, where the aggregation number reaches a maximum followed by a slight decrease in size at higher drug concentrations. We observe a correlation between the decrease in micelle size at high concentrations and an increasing charge of the micelles, as the degree of ionization increases with increasing drug concentration and decreasing pH. In contrast to what has previously been reported, the aggregation behavior of all studied drugs resembles the closed association behavior of conventional surfactants with a short aliphatic chain as hydrophobic tail group i.e. the micelles are always small in size and lack a second CMC. CMC values were determined with surface tension measurements, including also lidocaine hydrochloride (LDC) and chlorpromazine hydrochloride (CHL).
  •  
2.
  •  
3.
  • Kaspersen, Jørn D., et al. (författare)
  • Generic structures of cytotoxic liprotides : nano-sized complexes with oleic acid cores and shells of disordered proteins
  • 2014
  • Ingår i: ChemBioChem (Print). - : Wiley-VCH Verlagsgesellschaft. - 1439-4227 .- 1439-7633. ; 15:18, s. 2693-2702
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytotoxic complex formed between alpha-lactalbumin and oleic acid (OA) has inspired many studies on protein-fatty acid complexes, but structural insight remains sparse. After having used small-angle X-ray scattering (SAXS) to obtain structural information, we present a new, generic structural model of cytotoxic protein-oleic acid complexes, which we have termed liprotides (lipids and partially denatured proteins). Twelve liprotides formed from seven structurally unrelated proteins and prepared by different procedures all displayed core-shell structures, each with a micellar OA core and a shell consisting of flexible, partially unfolded protein, which stabilizes the OA micelle. The common structure explains similar effects exerted on cells by different liprotides and is consistent with a cargo off-loading of the OA into cell membranes.
  •  
4.
  • Sahin, Cagla, et al. (författare)
  • Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:27, s. 11949-11954
  • Tidskriftsartikel (refereegranskat)abstract
    • α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized β-sheet structures that accumulate in plaques in brains of Parkinson’s disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.
  •  
5.
  • Abelein, Axel, et al. (författare)
  • Formation of dynamic soluble surfactant-induced amyloid β peptide aggregation intermediates
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 288:32, s. 23518-23528
  • Tidskriftsartikel (refereegranskat)abstract
    • Intermediate amyloidogenic states along the amyloid β peptide (Aβ) aggregation pathway have been shown to be linked to neurotoxicity. To shed more light on the different structures that may arise during Aβ aggregation, we here investigate surfactant-induced Aβ aggregation. This process leads to co-aggregates featuring a β-structure motif that is characteristic for mature amyloid-like structures. Surfactants induce secondary structure in Aβ in a concentration-dependent manner, from predominantly random coil at low surfactant concentration, via β-structure to the fully formed α-helical state at high surfactant concentration. The β-rich state is the most aggregation-prone as monitored by thioflavin T fluorescence. Small angle x-ray scattering reveals initial globular structures of surfactant-Aβ co-aggregated oligomers and formation of elongated fibrils during a slow aggregation process. Alongside this slow (minutes to hours time scale) fibrillation process, much faster dynamic exchange (k(ex) ∼1100 s(-1)) takes place between free and co-aggregate-bound peptide. The two hydrophobic segments of the peptide are directly involved in the chemical exchange and interact with the hydrophobic part of the co-aggregates. Our findings suggest a model for surfactant-induced aggregation where free peptide and surfactant initially co-aggregate to dynamic globular oligomers and eventually form elongated fibrils. When interacting with β-structure promoting substances, such as surfactants, Aβ is kinetically driven toward an aggregation-prone state.
  •  
6.
  • Akesson, Anna, et al. (författare)
  • The effect of PAMAM G6 dendrimers on the structure of lipid vesicles
  • 2010
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 12:38, s. 12267-12272
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendrimers are polymers with unique properties that make them promising in a variety of applications such as potential drug and gene delivery systems. PAMAM dendrimers, in particular, have been widely investigated and are efficiently translocated into the cell. The mechanism of translocation, however, is still unknown. Recently it was proposed that PAMAM dendrimers are able to open holes in lipid bilayers by stealing lipid from the bilayer and forming "dendrisomes''. The present work intends to contribute in the clarification of this question: why are dendrimers able to translocate into the cell? We create simple models for cell membranes by using small lipid vesicles that present a single lipid phase at physiologically relevant conditions. We then follow the effect that dendrimers have on the structure of the vesicles by using a combination of various techniques: dynamic light scattering, cryo-TEM and small angle X-ray scattering. We discuss our results with respect to the previous findings and reflect on their possible implications for real translocation in living cells.
  •  
7.
  • Andersen, Felicie F., et al. (författare)
  • Assembly and structural analysis of a covalently closed nano-scale DNA cage
  • 2008
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 36:4, s. 1113-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • The inherent properties of DNA as a stable polymer with unique affinity for partner mols. detd. by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnol. Here we present the design, construction and structural anal. of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helixes that assembles from eight oligonucleotides with a yield of .apprx.30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-mols. to enable their investigation in certain harmful environments or even allow their organization into higher order structures.
  •  
8.
  •  
9.
  •  
10.
  • Arleth, Lise, et al. (författare)
  • Block-copolymer micro-emulsion with solvent-induced segregation
  • 2007
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 23:4, s. 2117-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • Reverse micelle formation of the poly(ethylene oxide)/poly(propylene oxide) block-copolymer (EO)(13)(PO)(30)(EO)(13) (L64) in p-xylene was investigated as a function of water content and copolymer content, using small-angle neutron scattering (SANS). PEO/PPO block-copolymers are generally soluble in xylene but without forming aggregates. However, the effective block segregation increases dramatically upon addition of small amounts of water, and micelles form. The SANS data were analyzed using an absolute scale model fitting approach. This way, a detailed quantitative description of the system in terms of unimer concentration, micelle structure, and aggregation number as well as particle-particle interactions can be obtained. This approach throws light on very atypical features of the system as compared to standard amphiphilic systems. Data from samples measured along water-swelling lines with fixed EO/p-xylene-d(10) molar ratios show that reverse micelles are formed at the water/EO molar ratio, W-0 congruent to 0.2, independent of copolymer concentration. The majority of the block-copolymers are on a free monomer state (unimer state) at this W-0. Increasing W-0 above 0.2 only has a small effect on the micelle size. However, it does induce a strong increase of the total number of micelles and induce a corresponding decrease of the unimer concentration. On the other hand, increasing the overall copolymer concentration at fixed W-0 gives rise to a significant decrease of the micelle size in terms of the micellar aggregation number. This observed behavior is totally different from what is normally observed for binary surfactant-solvent systems and droplet micro-emulsion systems, respectively. We believe that the atypical behavior is a result of the unusually weak segregation in the system, and we are not aware of previous discussions of the phenomenon for reverse micellar systems.
  •  
11.
  • Balogh, Joakim, et al. (författare)
  • A SANS contrast variation study of microemulsion droplet growth
  • 2007
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 111:4, s. 682-689
  • Tidskriftsartikel (refereegranskat)abstract
    • An extensive small angle neutron scattering study is presented using contrast variation on the growth of nonionic microemulsion droplets as the temperature and thus spontaneous curvature is varied away from the emulsification failure boundary, EFB, toward zero spontaneous curvature. Two ternary systems are compared. They only differ by the chain length of the oil ( decane and hexadecane, respectively). Droplets grow in size as one moves away from the EFB. SANS data from ten different contrasts were fitted simultaneously with a model of polydisperse prolate shaped droplets interacting with an effectively hard sphere potential, and the data set further included three different droplet concentrations and four different temperatures. The model of prolates provided a good description of the data. The prolate axial ratio, obtained from the fits, increased with increasing temperature but showed only a minor variation with the droplet concentration. The two systems with different oils behave quantitatively different. In both systems, however, the droplet growth is only minor, with maximum axial ratios of about 3-4, before a bicontinuous microemulsion is formed.
  •  
12.
  • Balogh, Joakim, et al. (författare)
  • Investigating the Effect of Adding Drug (Lidocaine) to a Drug Delivery System Using Small-Angle X-Ray Scattering
  • 2008
  • Ingår i: Colloids for Nano- and Biotechnology (Progress in Colloid and Polymer Science). - Berlin, Heidelberg : Springer Berlin Heidelberg. - 0340-255X. - 9783540851332 ; 135, s. 101-106
  • Konferensbidrag (refereegranskat)abstract
    • The effect on a model drug delivery system when adding a drug, lidocaine, has been studied. Temperature and concentration dependence of a nonionic microemulsion with part of the oil, 1 and 10 vol. %, substituted with drug has been investigated. A nonionic oil-in-water microemulsion consisting of CH3(CH2)(11)(OCH2CH2)(5)OH, (C12E5), decane, water and the drug (lidocaine) that has been used to substitute part of the oil was studied. The microscopic differences have been derived from small-angle X-ray scattering (SAXS) data and the results are compared with light scattering data. Using these results together with the macroscopic differences, as observed in the phase diagram (lowering of phase boundaries), between the systems with and without lidocaine can be explained.
  •  
13.
  •  
14.
  • Bastardo Zambrano, Luis Alejandro, 1976- (författare)
  • Self assembly of surfactants and polyelectrolytes in solution and at interfaces
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on the study of the interactions between polyelectrolytes and surfactants in aqueous solutions and at interfaces, as well as on the structural changes these molecules undergo due to that interaction. Small–angle neutron scattering, dynamic, and static light scattering were the main techniques used to investigate the interactions in bulk. The first type of polymer studied was a negatively charge glycoprotein (mucin); its interactions with ionic sodium alkyl sulfate surfactants and nonionic surfactants were determined. This system is of great relevance for several applications such as oral care and pharmaceutical products, since mucin is the main component of the mucus layer that protects the epithelial surfaces (e.g. oral tissues). Sodium dodecyl sulfate (SDS) on the other hand, has been used as foaming agent in tooth pastes for a very long time. In this work it is seen how SDS is very effective in dissolving the large aggregates mucin forms in solution, as well as in removing preadsorbed mucin layers from different surfaces. On the other hand, the nonionic surfactant n-dodecyl β-D-maltopyranoside (C12-mal), does not affect significantly the mucin aggregates in solution, neither does it remove mucin effectively from a negatively charge hydrophilic surface (silica). It can be suggested that nonionic surfactants (like the sugar–based C12-mal) could be used to obtain milder oral care products. The second type of systems consisted of positively charged polyelectrolytes and a negatively charged surfactant (SDS). These systems are relevant to a wide variety of applications ranging from mining and cleaning to gene delivery therapy. It was found that the interactions of these polyelectrolytes with SDS depend strongly on the polyelectrolyte structure, charge density and the solvent composition (pH, ionic strength, and so on). Large solvent isotopic effects were found in the interaction of polyethylene imine (PEI) and SDS, as well as on the interactions of this anionic surfactant and the sugar–based n-decyl β-D-glucopyranoside (C10G1). These surfactants mixtures formed similar structures in solutions to the ones formed by some of the polyelectrolytes studied, i.e. ellipsoidal micelles at low electrolyte concentration and stiff rods, at high electrolyte and SDS concentrations.
  •  
15.
  • BAYATI, SOLMAZ, et al. (författare)
  • Mixed micelles of oppositely charged poly(N-isopropylacrylamide) diblock copolymers
  • 2017
  • Ingår i: Journal of Polymer Science, Part B: Polymer Physics. - : Wiley. - 0887-6266. ; 55:19, s. 1457-1470
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed micelle formation between two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N-isopropylacrylamide) (PNIPAAM) has been studied. The block copolymer mixed solutions were investigated under equimolar charge conditions as a function of both temperature and total polymer concentrations by turbidimetry, differential scanning calorimetry, two-dimensional proton nuclear magnetic nuclear Overhauser effect spectroscopy (2D 1H NMR NOESY), dynamic light scattering, and small angle X-ray scattering measurements. Well-defined and electroneutral cylindrical micelles were formed with a radius and a length of about 3 nm and 35 nm, respectively. In the micelles, the charged blocks built up a core, which was surrounded by a corona of PNIPAAM chains. The 2D 1H NMR NOESY experiments showed that a minor block mixing occurred between the core blocks and the PNIPAAM blocks. By approaching the lower critical solution temperature of PNIPAAM, the PNIPAAM chains collapsed, which induced aggregation of the micelles.
  •  
16.
  • Behrens, Manja A, et al. (författare)
  • Temperature-Induced Attractive Interactions of PEO-Containing Block Copolymer Micelles
  • 2014
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 30:21, s. 6021-6029
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions in a temperature sensitive-colloidal model system are investigated over a wide range of temperatures and concentrations to characterize the interparticle interactions within the system. This model system is composed of poly(ethylene oxide) end-capped with an octadecyl chain (C18E100), which by small-angle X-ray scattering (SAXS) have been shown to form spherical micelles in an aqueous salt solution. In the present study a 0.9 M NaF solution is used to shift the cloud point into the experimentally convenient temperature range. Densitometry and SAXS have shown no indication of specific interactions between the salt ions and the micelles. The spherical micelles are found to persist at elevated temperatures and a change in interparticle interaction is observed by viscometry and SAXS. The results are all consistent with the decreased solvent quality of water toward poly(ethylene oxide) with increasing temperature and it is seen that attractive interparticle interactions emerge in the vicinity of the cloud point.
  •  
17.
  • Bergström, L. Magnus, et al. (författare)
  • The growth of micelles, and the transition to bilayers, in mixtures of a single-chain and a double-chain cationic surfactant investigated with small-angle neutron scattering
  • 2011
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-683X .- 1744-6848. ; 7:22, s. 10935-10944
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembly in aqueous mixtures of a single-chain (DTAB) and a double-chain cationic surfactant (DDAB) has been investigated with small-angle neutron scattering (SANS). Small oblate spheroidal micelles formed by DTAB grow with respect to width and length to form mixed ellipsoidal tablet-shaped micelles as an increasing fraction of DDAB is admixed into the micelles. The growth behaviour of the micelles is rationalized from the general micelle model in terms of three bending elasticity constants spontaneous curvature (H-0), bending rigidity (k(c)) and saddle-splay constant ((k(c)) over bar kc). It is found that micelles grow with respect to width, mainly as a result of decreasing k(c)H(0), and in the length direction as a result of decreasing k(c). The micelles are still rather small, i.e. about 140 angstrom in length, as an abrupt transition to large bilayer aggregates is observed. The micelle-to-bilayer transition is induced by changes in aggregate composition and is observed to occur at a mole fraction of DDAB equal to about x = 0.48 in D2O, which is a significantly higher value than previously observed for the same system in H2O (x = 0.41). An abrupt micelle-to-bilayer transition is in agreement with predictions from the general micelle model, according to which an abrupt transition from micelles to bilayers is expected to occur at xi H-0 = 1/4, where x is the thickness of the self-assembled interface, and we may conclude that H-0(D2O) > H-0(H2O) for the system DDAB/DTAB in absence of added salt. Samples with bilayers are found to be composed of bilayer disks coexisting with vesicles. Disks are found to always predominate over vesicles with mass fractions about 70-90% disks and 10-30% vesicles. Micelles, disks and vesicles are observed to coexist in a few samples close to the micelle-to-bilayer transition.
  •  
18.
  • Bodvik, Rasmus, et al. (författare)
  • Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions.
  • 2010
  • Ingår i: Colloids and Surfaces A. - : Elsevier. - 0927-7757 .- 1873-4359. ; 354:1-3, s. 162-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution properties of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) have been investigated as a function of temperature and concentration using a broad range of experimental techniques. Novelties include the extensive comparison between MC and HPMC solutions as well as the combination of techniques, and the use of Cryo transmission electron microscopy (Cryo-TEM). The correlation between rheology and light scattering results clearly demonstrates the relation between viscosity change and aggregation. Cryo-TEM images show the network structures formed. Viscosity measurements show that for both MC and HPMC solutions sudden changes in viscosity occur as the temperature is increased. The onset temperature for these changes depends on polymer concentration and heating rate. For both MC and HPMC solutions the viscosity on cooling is very different compared to on heating, demonstrating the slow equilibration time. The viscosity changes in MC and HPMC solutions are dramatically different; for MC solutions the viscosity increases by several orders of magnitude when a critical temperature is reached, whereas for HPMC solutions the viscosity decreases abruptly at a given temperature, followed by an increase upon further heating. Light and (SAXS) small-angle X-ray scattering shows that the increase in viscosity, for MC as well as for HPMC solutions, is due to extensive aggregation of the polymers. Light scattering also provides information on aggregation kinetics. The SAXS measurements allow us to correlate aggregation hysteresis to the viscosity hysteresis, as well as to extract some structural information. Cryo-TEM images give novel information that a fibrillar network is formed in MC solutions, and the strong viscosity increase occurs when this network spans the whole solution volume. For HPMC solutions the behaviour is more complex. The decrease in viscosity can be related to the formation of compact objects, and the subsequent increase to formation of fibrillar structures, which are more linear and less entangled than for MC.
  •  
19.
  • Dai, Jing, et al. (författare)
  • Release of Solubilizate from Micelle upon Core Freezing
  • 2017
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 121:45, s. 10353-10363
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining NMR (yielding H-1 chemical shift, spin relaxation, and self-diffusion data) and small-angle X-ray scattering experiments, we investigate the complex temperature dependence of the molecular and aggregate states in aqueous solutions of the surfactant [CH3(CH2)(17)(OCH2CH2)(20)OH], abbreviated as C18E20, and.hexamethyldisiloxane, HMDSO. The latter molecule serves as a model for hydrophobic solubilizates. Previously, the pure micellar solution was demonstrated to exhibit core freezing at approximately 7-8 degrees C. At room temperature, we find that HMDSO solubilizes at a volume fraction of approximately 10% in the core of the C18E20 micelles, which consists of molten and thereby highly mobile alkyl chains. Upon lowering the temperature, core freezing is found, just like in pure micelles, but at a temperature shifted significantly to 3 degrees C. The frozen cores contain immobile alkyl chains and exhibit a higher density but are essentially devoid (volume fraction below 1%) of the solubilizate. The latter molecules are released, first gradually and then rather steeply, from the core in the temperature range that is roughly delimited by the two core freezing temperatures, one for pure micelles and one for micelles with solubilizates. The release behavior of systems with different initial HMDSO loading follows the same master curve. This feature is rationalized in terms of loading capacity being strongly temperature dependent: upon lowering the temperature, release commences once the loading capacity descends below the actual solubilizate content. The sharp release curves and the actual release mechanism with its molecular features shown in rich detail have some bearing on a diverse class of possible applications.
  •  
20.
  • Døvling Kaspersen, Jørn, et al. (författare)
  • Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species.
  • 2016
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20-40 Å for most samples but 40-60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content.
  •  
21.
  • Falk, Yana Znamenskaya, et al. (författare)
  • Effects of Hydration on Structure and Phase Behavior of Pig Gastric Mucin Elucidated by SAXS
  • 2018
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 122:30, s. 7539-7546
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work small-angle X-ray scattering (SAXS) was used to study hydration and temperature-induced changes of pig gastric mucin (PGM) within the entire concentration range. The scattering is interpreted as originating from PGM fiber-like structures that adopt rod-like bottle-brush conformation in dilute solutions. On the basis of the knowledge about molecular structure of mucins and SAXS data for dilute solutions, we propose a theoretical model for predicting mucin conformation in solution and calculate the corresponding scattering profile. This bottle-brush model comprises a protein backbone with carbohydrate side chains and corresponding structural parameters, such as grafting distance and lengths of the backbone and side chains. It describes the experimental PGM data from dilute solutions in the full q range very well. It furthermore suggests that the carbohydrate side chains are grafted with a regular separation of around 5 nm and a length of 14 nm. The cross-section size with a radius of about 1 nm is also in accordance with the size of the carbohydrate units. Structuring of PGM solutions at higher concentrations was investigated by analyzing semidilute and concentrated PGM samples. Starting at about 20 wt %, Bragg peaks become clearly visible indicating a more ordered mucin system. In very dehydrated and fully dry mucin samples these peaks are not present indicating lack of long-range order. The SAXS data show that the structural change occurring at about 80 wt % mucin and 25 degrees C corresponds to a glass transition in agreement with our previous calorimetric results. Temperature also has an effect on the phase behavior of mucin. At intermediate levels of hydration, a phase transition is observed at about 60-70 degrees C. The main Bragg peak appears to split in two, indicating formation of a different structure at elevated temperatures. These findings are used to improve the PGM water phase diagram.
  •  
22.
  • Fatouros, Dimitrios G., et al. (författare)
  • Structural development of self nano emulsifying drug delivery systems (SNEDDS) during In vitro lipid digestion monitored by small-angle x-ray scattering
  • 2007
  • Ingår i: Pharmaceutical Research. - : Springer Science and Business Media LLC. - 1573-904X .- 0724-8741. ; 24:10, s. 1844-1853
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose. To investigate the structural development of the colloid phases generated during lipolysis of a lipid-based formulation in an in vitro lipolysis model, which simulates digestion in the small intestine. Materials and Methods. Small-Angle X-Ray scattering (SAXS) coupled with the in vitro lipolysis model which accurately reproduces the solubilizing environment in the gastrointestinal tract and simulates gastrointestinal lipid digestion through the use of bile and pancreatic extracts. The combined method was used to follow the intermediate digestion products of a self nano emulsified drug delivery system (SNEDDS) under fasted conditions. SNEDDS is developed to facilitate the uptake of poorly soluble drugs. Results. The data revealed that a lamellar phase forms immediately after initiation of lipolysis, whereas a hexagonal phase is formed after 60 min. The change of the relative amounts of these phases clearly demonstrates that lipolysis is a dynamic process. The formation of these phases is driven by the lipase which continuously hydrolyzes triglycerides from the oil-cores of the nanoemulsion droplets into mono- and diglycerides and fatty acids. We propose that this change of the over-all composition of the intestinal fluid with increased fraction of hydrolyzed nanoemulsion induces a change in the composition and effective critical packing parameter of the amphiphilic molecules, which determines the phase behavior of the system. Control experiments (only the digestion medium) or the surfactant (Cremophor RH 40) revealed the formation of a lamellar phase demonstrating that the hexagonal phase is due to the hydrolysis of the SNEDDS formulation. Conclusion. The current results demonstrate that SAXS measurements combined with the in vitro dynamic lipolysis model may be used to elucidate the processes encountered during the digestion of lipid-based formulations of poorly soluble drugs for oral drug delivery. Thus the combined methods may act as an efficient screening tool.
  •  
23.
  • Forooqi Motlaq, Vahid, et al. (författare)
  • Investigation of the enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles.
  • 2021
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 17:33, s. 7769-7780
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-assembly in mixtures of the anionic bile salt surfactant sodium deoxycholate (NaDC) and the zwitterionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in physiological saline solution has been investigated using light scattering, small-angle X-ray scattering and cryo-transmission electron microscopy. Rather small tri-axial ellipsoidal NaDC-DMPC mixed micelles form at a high content of bile salt in the mixture, which increase in size as an increasing amount of DMPC is incorporated into the micelles. Eventually, the micelles begin to grow substantially in length to form long wormlike micelles. At higher mole fractions of DMPC, the samples become turbid and cryo-TEM measurements reveal the existence of large perforated vesicles (stomatosomes), coexisting with geometrically open disks. To our knowledge, stomatosomes have not been observed before for any bile salt-phospholipid system. Mixed micelles are found to be the sole aggregate structure in a very wide regime of bile salt-phospholipid compositions, i.e. up to about 77 mol% phospholipid in the micelles. This is much higher than the corresponding value of 25 mol% observed for the conventional surfactant hexadecyltrimethylammonium bromide (CTAB) mixed with DMPC in the same solvent. The enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles is rationalized using bending elasticity theory. From our theoretical analysis, we are able to conclude that amphiphilic molecules rank in the following order of increasing spontaneous curvature: phospholipids < conventional surfactants < bile salts. The bending rigidity of the different amphiphilic molecules increases according to the following sequence: bile salts < conventional surfactants < phospholipids.
  •  
24.
  • Gibaud, Thomas, et al. (författare)
  • New routes to food gels and glasses
  • 2012
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1364-5498 .- 1359-6640. ; 158, s. 267-284
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the possibility to create solid-like protein samples whose structural and mechanical properties can be varied and tailored over an extremely large range in a very controlled way through an arrested spinodal decomposition process. We use aqueous lysozyme solutions as a model globular protein system. A combination of video microscopy, small-angle neutron and X-ray scattering and reverse Monte Carlo modeling is used to characterize the structure of the bicontinuous network with two coexisting phases of a dilute protein solution and a glassy or arrested dense protein backbone at all relevant length scales. Rheological measurements are then used to determine the complex mechanical response of these protein gels as a function of protein concentration and quench temperature. While in particular the origin of the dependence of the mechanical properties on quench depth and concentration is not well understood currently, it seems ultimately connected to the particular bicontinuous structure of the arrested spinodal network created by the interplay between the early stage of a spinodal decomposition and the position of the glass line. We then generalize this behavior and discuss how this could open up new routes to prepare gel-like food systems with adjustable structural and mechanical properties. We present results from a first feasibility study where we use a depletion interaction caused by the addition of small non-adsorbing polymers to suspensions of casein micelles in order to create food gels with tunable structural and mechanical properties through an arrested spinodal decomposition process.
  •  
25.
  • Jakubauskas, Dainius, et al. (författare)
  • Toward reliable low-density lipoprotein ultrastructure prediction in clinical conditions : A small-angle X-ray scattering study on individuals with normal and high triglyceride serum levels
  • 2021
  • Ingår i: Nanomedicine. - : Elsevier. - 1549-9634 .- 1549-9642. ; 31, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is the main killer in the west and therefore a major health challenge today. Total serum cholesterol and lipoprotein concentrations, used as clinical markers, fail to predict the majority of cases, especially between the risk scale extremes, due to the high complexity in lipoprotein structure and composition. In particular, low-density lipoprotein (LDL) plays a key role in atherosclerosis development, with LDL size being a parameter considered for determining the risk for cardiovascular diseases. Determining LDL size and structural parameters is challenging to address experimentally under physiological-like conditions. This article describes the biochemistry and ultrastructure of normolipidemic and hypertriglyceridemic LDL fractions and subfractions using small-angle X-ray scattering. Our results conclude that LDL particles of hypertriglyceridemic compared to healthy individuals 1) have lower LDL core melting temperature, 2) have lower cholesteryl ester ordering in their core, 3) are smaller, rounder and more spherical below melting temperature, and 4) their protein-containing shell is thinner above melting temperature.
  •  
26.
  • Madenci, Dilek, et al. (författare)
  • Simple model for the growth behaviour of mixed lecithin-bile salt micelles
  • 2011
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084. ; 13:8, s. 3171-3178
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed lecithin-bile salt micelles are known to have a cylindrical or worm-like structure. We investigated their shape, length, flexibility and cross-sectional structure using small-angle neutron scattering (SANS). A broad range of sample compositions was studied varying both the total amphiphile concentration and the molar ratio of bile salt (sodium taurochenodeoxycholate, NaTCDC) to lecithin (egg yolk phosphatidylcholine, EYL). The length of the micelles was quantitatively linked to the micellar composition by introducing a simple model. The model takes into account the partitioning of lecithin and bile salt between the bulk, cylindrical parts and the end caps of the micelles. The model also sheds light on the organization of the micelles, both in their cylindrical regions and end caps.
  •  
27.
  •  
28.
  • Maric, Selma, et al. (författare)
  • Modeling Small-Angle X-Ray Scattering Data for Low Density Lipoproteins : Insights Into The Fatty Core Phase Packing And Transition
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 11:1, s. 1080-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis and its clinical consequences are the leading cause of death in the western hemisphere. While many studies throughout the last decades have aimed at understanding the disease, the clinical markers in use today still fail to accurately predict the risks. The role of the current main clinical indicator, low density lipoprotein (LDL), in depositing fat to the vessel wall is believed to be the onset of the process. However, many subfractions of the LDL, which differ both in structure and composition, are present in the blood and among different individuals. Understanding the relationship between LDL structure and composition is key to unravel the specific role of various LDL components in the development and/or prevention of atherosclerosis. Here, we describe a model for analyzing small-angle X-ray scattering data for rapid and robust structure determination for the LDL. The model not only gives the overall structure but also the particular internal layering of the fats inside the LDL core. Thus, the melting of the LDL can be followed in situ as a function of temperature for samples extracted from healthy human patients and purified using a double protocol based on ultracentrifugation and size-exclusion chromatography. The model provides information on: (i) the particle-specific melting temperature of the core lipids, (ii) the structural organization of the core fats inside the LDL, (iii) the overall shape of the particle, and (iv) the flexibility and overall conformation of the outer protein/hydrophilic layer at a given temperature as governed by the organization of the core. The advantage of this method over other techniques such as cryo-TEM is the possibility of in situ experiments under near-physiological conditions which can be performed relatively fast (minutes at home source, seconds at synchrotron). This approach now allows the monitoring of structural changes in the LDL upon different stresses from the environment, such as changes in temperature, oxidation, or external agents used or currently in development against atherosclerotic plaque build-up and which are targeting the LDL.
  •  
29.
  • Nickel, Anne C., et al. (författare)
  • Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992.
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of soft anisotropic building blocks is of great interest for various applications in soft matter. Furthermore, such systems would be important model systems for ordering phenomena in fundamental soft matter science. In this work, we address the challenge of creating hollow and anisotropically shaped thermoresponsive microgels, polymeric networks with a solvent filled cavity in their center that are swollen in a good solvent. Sacrificial elliptical hematite silica particles were utilized as a template for the synthesis of a cross-linked N-isopropylacrylamide (NIPAm) shell. By varying the amount of NIPAm, two anisotropic microgels were synthesized with either a thin or thick microgel shell. We characterized these precursor core-shell and the resulting hollow microgels using a combination of light, X-ray, and neutron scattering. New form factor models, accounting for the cavity, the polymer distribution and the anisotropy, have been developed for fitting the scattering data. With such models, we demonstrated the existence of the cavity and simultaneously the anisotropic character of the microgels. Furthermore, we show that the thickness of the shell has a major influence on the shape and the cavity dimension of the microgel after etching of the sacrificial core. Finally, the effect of temperature is investigated, showing that changes in size, softness, and aspect ratio are triggered by temperature.
  •  
30.
  • Plazzotta, Beatrice, et al. (författare)
  • Core Freezing and Size Segregation in Surfactant Core-Shell Micelles
  • 2015
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 119:33, s. 10798-10806
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonionic surfactants containing poly(ethylene oxide) are chemically simple and biocompatible and form core-shell micelles at a wide range of conditions. For those reasons, they and their aggregates have been widely investigated. Recently, irregularities that were observed in the low-temperature behavior of surfactants of the kind [CH3(CH2)(n)O-(CH2CH2O)(m)H], (abbreviated CnEm) were assigned to a freezing-melting phase transition in the micellar core. In this work we expand the focus from the case of single component systems to binary surfactant systems at temperatures between 1 and 15 degrees C. By applying small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and density measurements in pure C18E20 and C18E100 solutions and their mixtures, we show that core freezing/melting is also present in mixtures. Additionally, comparing SAXS data obtained from the mixture with those from the single components, it was possible to demonstrate that the phase transition leads to a reversible segregation of the surfactants from mixed micelles to distinct kinds of micelles of the two components.
  •  
31.
  • Schantz Zackrisson, Anna, 1973, et al. (författare)
  • A small-angle X-ray scattering study of aggregation and gelation of colloidal silica
  • 2008
  • Ingår i: Colloids and surfaces. A, Physicochemical and engineering aspects. - : Elsevier BV. - 0927-7757. ; 315:1-3, s. 23-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation and gelation in colloidal silica dispersions have been studied by time-resolved, small-angle X-ray scattering. Two different ways of raising the ionic strength, leading to destabilization of the dispersions, have been examined. In situ destabilization by urease-catalyzed hydrolysis of urea has been used as well as an approach with simple mixing of sols with salt solutions. For concentrated dispersions different structures result from the two destabilization methods. Structures differ also in the gelled state, with essentially no fractal scattering from the directly mixed samples whereas fractal scattering on intermediate length scales is observed for the in situ destabilized samples. In contrast, for more dilute particle concentrations, similar structures are generated in both cases and at gelation structures are in close agreement. However, gel times differ drastically in some cases for the two methods, as do the conditions for gelation. These differences are tentatively rationalized by some degree of irreversible aggregation occurring in the mixing stage that, given sufficient time, leads to gelation.
  •  
32.
  • Schmitt, Julien, et al. (författare)
  • In situ SAXS investigation of dual ordered mesoporous materials formation.
  • 2015
  • Ingår i: ChemPhysChem. - : Wiley. - 1439-7641 .- 1439-4235. ; 16:17, s. 3637-3641
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of two-dimensional (2D)-hexagonal (p6m) silica-based hybrid material with a dual-mesoporosity is investigated in situ using synchrotron time-resolved Small Angle X-ray Scattering (SAXS). The material is synthesized from a mixed micellar solution of a nonionic fluorinated surfactant, RF₈(EO)₉, and a nonionic triblock copolymer, P123. Both mesoporosities, with pores dimensions at 3.3 and 8.5 nm respectively, are seen by Nitrogen sorption, TEM and SAXS. The in situ SAXS experiments reveal a mesophase formation in two steps. First the nucleation and growth of a primary 2D-hexagonal network (N1) associated to mixed micelles containing P123, then followed by the formation of the second network (N2) associated to micelles of pure RF₈(EO)₉. The data obtained from SAXS and TEM suggest that N1 is used as nucleation centers for the formation of N2, that would result in the formation of a grain with both mesoporosities. Understanding the formation mechanism of such material is an important step towards the synthesis of more complex materials with a fine tuning of the porosity.
  •  
33.
  • Schmitt, Julien, et al. (författare)
  • Outset of the Morphology of Nanostructured Silica Particles during Nucleation Followed by Ultrasmall-Angle X-ray Scattering
  • 2016
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:20, s. 5162-5172
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation and growth of SBA-15 silica nanostructured particles with well-defined morphologies has been followed with time by small-angle X-ray scattering (SAXS) and ultrasmall-angle X-ray scattering (USAXS), using synchrotron radiation. Three different morphologies have been compared: platelets, toroids, and rods. SEM observations of the particles confirm that two key physical parameters control the morphology: the temperature and the stirring of the solution. USAXS curves demonstrate that primary particles with a defined shape are present very early in the reaction mixture, immediately after a very fast nucleation step. This nucleation step is detected at 10 min (56 degrees C) or 15 min (50 degrees C) after the addition of the silica precursor. The main finding is that the USAXS signal is different for each type of morphology, and we demonstrate that the difference is related to the shape of the particles, showing characteristic form factors for the different morphologies (platelet, toroid, and rod). Moreover, the size of the mesocrystal domains is correlated directly with the particle dimensions and shape. When stirred, aggregation between primary particles is detected even after 12 min (56 degrees C). The platelet morphology is promoted by constant stirring of the solution, through an oriented aggregation step between primary particles. In contrast, toroids and rods are only stabilized under static conditions. However, for toroids, aggregation is detected almost immediately after nucleation.
  •  
34.
  • Sharifi, Soheil, et al. (författare)
  • Variations in Structure Explain the Viscometric Behavior of AOT Microemulsions at Low Water/AOT Molar Ratios
  • 2012
  • Ingår i: Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics. - : Walter de Gruyter GmbH. - 0942-9352. ; 226:3, s. 201-218
  • Tidskriftsartikel (refereegranskat)abstract
    • The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.
  •  
35.
  •  
36.
  • Sörensen, Malin H., et al. (författare)
  • Expansion of the F127-templated mesostructure in aerosolgeneratedparticles by using polypropylene glycol as a swelling agent
  • 2008
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 113, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Expansion of the mesostructure in aerosol-generated particles was performed through incorporation of polypropylene glycol (PPG), a non-volatile swelling agent. TEOS was used as silica source and the Pluronic block copolymer, F127, as template. The ratio of TEOS to F127 was kept constant during synthesis, while varying the weight ratio of PPG to F127 systematically. The impact of the PPG on the expansion of the structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen adsorption. Different methods were used to calculate the pore size distributions, the BJH, the BdB-FHH, the KJS and the NLDFT method. Simple geometrical models of the expansion were derived to interpret the experimental data and establish their accuracy. Experimental data showed a roughly linear expansion of the unit cell and pore size, consistent with that expected by modelling the swelling of a hexagonal (p6mm) structure assuming constant wall thickness. The expansion is increasing as a function of increasing PPG/F127 ratio by about 25 Å. An expression of the density of the silica wall was calculated from the models resulting in a density of 1.95 ± 0.2 g/cm3. At a PPG/F127 ratio of approximately 0.31, the p6mm structure (found at lower PPG/F127 ratios) transforms to a microemulsion-templated foam structure. At an even higher PPG/F127 ratio (0.63–1.56), phase separation of the oil from the swollen template occurred, yielding a two-phase system of coexisting foam and large vesicles.
  •  
37.
  • Tyrsted, Christoffer, et al. (författare)
  • In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1-xO2 Nanoparticles Synthesized in Supercritical Water
  • 2010
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 22:5, s. 1814-1820
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ synchrotron powder X-ray diffraction (PXRD) measurements have been conducted to follow the nucleation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water with a full substitution variation (x = 0, 0.2, 0.5, 0.8, and 1.0). Direction-dependent growth curves are determined and described using reaction kinetic models. A disctinct change in growth kinetics is observed with increasing cerium content. For x = 0.8 and 1.0 (high cerium content), the growth in initially limited by the surface reaction kinetics, however, at a size of similar to 6 nm, the growth changes and becomes limited by the diffusion of monomers toward the surface. For x = 0 and 0.2, the opposite behavior is observed with the growth initially being limited by diffusion (up to similar to 3.5 nm) and later by the surface reaction kinetics. Thus, although a continuous solid solution can be obtained for the ceria-zirconia system, the growth of ceria and zirconia nanoparticles is fundamentally different under supercritical flow reactor. The resulting samples were analyzed using PXRD, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The nanoparticles with x = 0, 0.2, and 0.5 have very low polydispersities. The sizes range from 4 nm to 7 nm, and the particles exhibit a reversibly pH-dependent agglomeration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-37 av 37
Typ av publikation
tidskriftsartikel (33)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Pedersen, Jan Skov (30)
Bergenholtz, Johan, ... (3)
Bergström, Magnus (3)
Cardenas, Marite (3)
Schillén, Karin (2)
Christiansen, Gunna (2)
visa fler...
Otzen, Daniel E. (2)
Schurtenberger, Pete ... (2)
Edwards, Katarina (2)
Karlsson, Göran (2)
Furo, Istvan (2)
Alfredsson, Viveka (2)
Andersson, Martin (1)
Hansson, Per (1)
Gräslund, Astrid (1)
Danielsson, Jens (1)
Abelein, Axel (1)
Kaspersen, Jørn Døvl ... (1)
Nielsen, Søren Bang (1)
Jensen, Grethe Veste ... (1)
Claesson, Per M. (1)
Altskär, Annika (1)
Sahin, Cagla (1)
Österlund, Nicklas (1)
Ilag, Leopold L (1)
Landreh, Michael (1)
Costeira-Paulo, Joan ... (1)
Marklund, Erik, Tekn ... (1)
Varga, Imre (1)
Bergenståhl, Björn (1)
Blomberg, Eva (1)
Bergström, Lennart (1)
Isaksson, Hanna (1)
Gedda, Lars (1)
Moulin, Martine (1)
Haertlein, Michael (1)
Akesson, Anna (1)
Bendtsen, Kristian M ... (1)
Beherens, Manja A. (1)
Gomez, Marite Carden ... (1)
Zhu, Kaizheng (1)
Nyström, Bo (1)
Cheng, Yuanji (1)
Kocherbitov, Vitaly (1)
Engblom, Johan (1)
Claesson, Per (1)
Alberius, Peter (1)
Cerenius, Yngve (1)
Andersson, Martin, 1 ... (1)
Knudsen, Bjarne (1)
visa färre...
Lärosäte
Lunds universitet (14)
Kungliga Tekniska Högskolan (7)
Uppsala universitet (6)
Malmö universitet (4)
Göteborgs universitet (3)
Stockholms universitet (3)
visa fler...
RISE (3)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (36)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Medicin och hälsovetenskap (3)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy