SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedersen Per Amstrup) "

Sökning: WFRF:(Pedersen Per Amstrup)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becares, Eva Ramos, et al. (författare)
  • Overproduction of human Zip (SLC39) zinc transporters in saccharomyces cerevisiae for biophysical characterization
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:2, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc constitutes the second most abundant transition metal in the human body, and it is implicated in numerous cellular processes, including cell division, DNA and protein synthesis as well as for the catalytic activity of many enzymes. Two major membrane protein families facilitate zinc homeostasis in the animal kingdom, i.e., Zrt/Irt‐like proteins (ZIPs aka solute carrier 39, SLC39, family) and Zn transporters (ZnTs), essentially conducting zinc flux in the opposite directions. Human ZIPs (hZIPs) regulate import of extracellular zinc to the cytosol, being critical in preventing overaccumulation of this potentially toxic metal, and crucial for diverse physiological and pathological processes, including development of neurodegenerative disorders and several cancers. To date, our understanding of structure–function relationships governing hZIP‐mediated zinc transport mechanism is scarce, mainly due to the notorious difficulty in overproduction of these proteins for biophysical characterization. Here we describe employment of a Saccharomyces cerevisiae‐based platform for heterologous expression of hZIPs. We demonstrate that yeast is able to produce four full‐length hZIP members belonging to three different subfamilies. One target (hZIP1) is purified in the high quantity and homogeneity required for the downstream biochemical analysis. Our work demonstrates the potential of the described production system for future structural and functional studies of hZIP transporters.
  •  
2.
  • Bjørkskov, Frederik Bühring, et al. (författare)
  • Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-To-express human membrane proteins suitable for biophysical characterization.
  •  
3.
  • Gotfryd, Kamil, et al. (författare)
  • Human adipose glycerol flux is regulated by a pH gate in AQP10
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
  •  
4.
  • Guo, Zongxin, et al. (författare)
  • Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper transporting P-type (P1B-1-) ATPases are essential for cellular homeostasis. Nonetheless, the E1-E1P-E2P-E2 states mechanism of P1B-1-ATPases remains poorly understood. In particular, the role of the intrinsic metal binding domains (MBDs) is enigmatic. Here, four cryo-EM structures and molecular dynamics simulations of a P1B-1-ATPase are combined to reveal that in many eukaryotes the MBD immediately prior to the ATPase core, MBD−1, serves a structural role, remodeling the ion-uptake region. In contrast, the MBD prior to MBD−1, MBD−2, likely assists in copper delivery to the ATPase core. Invariant Tyr, Asn and Ser residues in the transmembrane domain assist in positioning sulfur-providing copper-binding amino acids, allowing for copper uptake, binding and release. As such, our findings unify previously conflicting data on the transport and regulation of P1B-1-ATPases. The results are critical for a fundamental understanding of cellular copper homeostasis and for comprehension of the molecular bases of P1B-1-disorders and ongoing clinical trials.
  •  
5.
  • Jungersted, Jakob Mutanu, et al. (författare)
  • In vivo studies of aquaporins 3 and 10 in human stratum corneum.
  • 2013
  • Ingår i: Archives of dermatological research. - : Springer Science and Business Media LLC. - 1432-069X .- 0340-3696. ; 305:8, s. 699-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) constitute one family of transmembrane proteins facilitating transport of water across cell membranes. Due to their specificity, AQPs have a broad spectrum of physiological functions, and for keratinocytes there are indications that these channel proteins are involved in cell migration and proliferation with consequences for the antimicrobial defense of the skin. AQP3 and AQP10 are aqua-glyceroporins, known to transport glycerol as well as water. AQP3 is the predominant AQP in human skin and has previously been demonstrated in the basal layer of epidermis in normal human skin, but not in stratum corneum (SC). AQP10 has not previously been identified in human skin. Previous studies have demonstrated the presence of AQP3 and AQP10 mRNA in keratinocytes. In this study, our aim was to investigate if these aquaporin proteins were actually present in human SC cells. This can be seen as a first step toward elucidating the possible functional role of AQP3 and AQP10 in SC hydration. Specifically we investigate the presence of AQP3 and AQP10 in vivo in human SC using "minimal-invasive" technique for obtaining SC samples. SC samples were obtained from six healthy volunteers. Western blotting and immunohistochemistry were used to demonstrate the presence of AQP3 as well as AQP10. The presence of AQP3 and AQP10 was verified by Western blotting, allowing for detection of proteins by specific antibodies. Applying immunohistochemistry, cell-like structures in the shape of corneocytes were identified in all samples by AQP3 and AQP10 antibodies. In conclusion, identification of AQP3 and AQP10 protein in SC in an in vivo model is new. Together with the new "minimal-invasive" method for SC collection presented, this opens for new possibilities to study the role of AQPs in relation to function of the skin barrier.
  •  
6.
  • Skjørringe, Tina, et al. (författare)
  • Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Menkes disease (MD) is caused by mutations in ATP7A, encoding a copper-transporting P-type ATPase which exhibits copper-dependent trafficking. ATP7A is found in the Trans-Golgi Network (TGN) at low copper concentrations, and in the post-Golgi compartments and the plasma membrane at higher concentrations. Here we have analyzed the effect of 36 ATP7A missense mutations identified in phenotypically different MD patients. Nine mutations identified in patients with severe MD, virtually eliminated ATP7A synthesis, in most cases due to aberrant RNA splicing. A group of 21 predominantly severe mutations led to trapping of the protein in TGN and displayed essentially no activity in a yeast-based functional assay. These were predicted to inhibit the catalytic phosphorylation of the protein. Four mutants showed diffuse post-TGN localization, while two displayed copper dependent trafficking. These six variants were identified in patients with mild MD and typically displayed activity in the yeast assay. The four post-TGN located mutants were presumably affected in the catalytic dephosphorylation of the protein. Together these results indicate that the severity of MD correlate with cellular localization of ATP7A and support previous studies indicating that phosphorylation is crucial for the exit of ATP7A from TGN, while dephosphorylation is crucial for recycling back to TGN.
  •  
7.
  • Truelsen, Sigurd Friis, et al. (författare)
  • The role of water coordination in the pH-dependent gating of hAQP10
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736. ; 1864:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.
  •  
8.
  • Wang, Kaituo, et al. (författare)
  • Structure of the human ClC-1 chloride channel
  • 2019
  • Ingår i: PLoS biology. - : Public Library Science. - 1544-9173 .- 1545-7885. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue ("fast gate") known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-K and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-β-synthase (CBS) domains and the intracellular vestibule ("slow gating"). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1-related diseases.
  •  
9.
  • Zhang, Liying, et al. (författare)
  • Isolation and Crystallization of the D156C Form of Optogenetic ChR2
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Channelrhodopsins (ChRs) are light-gated ion channels that are receiving increasing attention as optogenetic tools. Despite extensive efforts to gain understanding of how these channels function, the molecular events linking light absorption of the retinal cofactor to channel opening remain elusive. While dark-state structures of ChR2 or chimeric proteins have demonstrated the architecture of non-conducting states, there is a need for open-and desensitized-state structures to uncover the mechanistic principles underlying channel activity. To facilitate comprehensive structural studies of ChR2 in non-closed states, we report a production and purification procedure of the D156C form of ChR2, which displays prolonged channel opening compared to the wild type. We demonstrate considerable yields (0.45 mg/g fermenter cell culture) of recombinantly produced protein using S. cerevisiae, which is purified to high homogeneity both as opsin (retinal-free) and as functional ChR2 with added retinal. We also develop conditions that enable the growth of ChR2 crystals that scatter X-rays to 6 Å, and identify a molecular replacement solution that suggests that the packing is different from published structures. Consequently, our cost-effective production and purification pipeline opens the way for downstream structural studies of different ChR2 states, which may provide a foundation for further adaptation of this protein for optogenetic applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy