SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pekkinen M.) "

Sökning: WFRF:(Pekkinen M.)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Laine, Christine M., et al. (författare)
  • A Novel Splice Mutation in PLS3 Causes X-linked Early Onset Low-Turnover Osteoporosis
  • 2015
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 30:3, s. 437-445
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors play an important role in the development of osteoporosis. Several monogenic forms of osteoporosis have been recognized, most recently an X-chromosomal form resulting from mutations in the gene encoding plastin 3 (PLS3). PLS3 is a protein involved in actin bundle formation in the cytoskeleton. We present a large family with early onset osteoporosis and X-linked inheritance. Phenotyping was performed on 19 family members and whole-exome sequencing on 7 family members (5 with a diagnosis of early onset osteoporosis and 2 with normal bone parameters). Osteoporosis had its onset in childhood and was characterized by recurrent peripheral fractures, low bone mineral density (BMD), vertebral compression fractures, and significant height loss in adulthood. Males were in general more severely affected than females. Bone histomorphometry findings in 4 males and 1 female showed severe trabecular osteoporosis, low amount of osteoid, and decreased mineral apposition rate, indicating impaired bone formation; resorption parameters were increased in some. All affected subjects shared a single base substitution (c.73-24T>A) in intron 2 of PLS3 on Xq23. The mutation, confirmed by Sanger sequencing, segregated according to the skeletal phenotype. The mutation introduces a new acceptor splice site with a predicted splice score of 0.99 and, thereby, as confirmed by cDNA sequencing, induces the insertion of 22 bases between exons 2 and 3, causing a frameshift and premature termination of mRNA translation (p.Asp25Alafs(not asymptotic to)17). The mutation affects the first N-terminal calcium-binding EF-hand domain and abolishes all calcium-and actinbinding domains of the protein. Our results confirm the role of PLS3 mutations in early onset osteoporosis. The mechanism whereby PLS3 affects bone health is unclear, but it may be linked to osteocyte dendrite function and skeletal mechanosensing. Future studies are needed to elucidate the role of PLS3 in osteoporosis and to define optimal treatment. (C) 2014 American Society for Bone and Mineral Research.
  •  
2.
  • Laine, Christine M., et al. (författare)
  • WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta
  • 2013
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 368:19, s. 1809-1816
  • Tidskriftsartikel (refereegranskat)abstract
    • This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T -> G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C -> A, p.Ser295(star). In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.
  •  
3.
  • Pekkinen, M., et al. (författare)
  • Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2
  • 2019
  • Ingår i: Jci Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 4:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane-resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.IIe62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.IIe62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasial Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.IIe62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane-bound sphingomyelin metabolism in skeletal homeostasis.
  •  
4.
  •  
5.
  • Viljakainen, H., et al. (författare)
  • Low Copy Number of the AMY1 Locus Is Associated with Early-Onset Female Obesity in Finland
  • 2015
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The salivary alpha-amylase locus (AMY1) is located in a highly polymorphic multi allelic copy number variable chromosomal region. A recent report identified an association between AMY1 copy numbers and BMI in common obesity. The present study investigated the relationship between AMY1 copy number, BMI and serum amylase in childhood-onset obesity. Sixty-one subjects with a history of childhood-onset obesity (mean age 19.1 years, 54% males) and 71 matched controls (19.8 yrs, 45% males) were included. All anthropometric measures were greater in the obese; their mean BMI was 40 kg/m(2) (range 25-62 kg/m(2)) compared with 23 kg/m(2) in the controls (15-32 kg/m(2)). Mean AMY1 copy numbers did not differ between the obese and control subjects, but gender differences were observed; obese men showed the highest and obese women the lowest number of AMY1 copies (p=0.045). Further, only in affected females, AMY1 copy number correlated significantly with whole body fat percent (r=-0.512, p=0.013) and BMI (r=-0.416, p=0.025). Finally, a clear linear association between AMY1 copy number and serum salivary amylase was observed in all subgroups but again differences existed between obese males and females. In conclusion, our findings suggest that AMY1 copy number differences play a role in childhood-onset obesity but the effect differs between males and females. Further studies in larger cohorts are needed to confirm these observations.
  •  
6.
  •  
7.
  •  
8.
  • Makitie, R. E., et al. (författare)
  • Skeletal Characteristics of WNT1 Osteoporosis in Children and Young Adults
  • 2016
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 31:9, s. 1734-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • WNT proteins comprise a 19-member glycoprotein family that act in several developmental and regenerative processes. In bone, WNT proteins regulate osteoblast differentiation and maintain bone health by activating the canonical WNT/-catenin pathway. We reported a heterozygous missense mutation c.652T>G (p.C218G) in WNT1 exon 4 as the cause for severe early-onset, autosomal dominant osteoporosis. The initial study concerned a large Finnish family with 10 affected adults. Here we report clinical findings of the WNT1 osteoporosis in 8 children and young adults (median age 14 years; range 10 to 30 years) in two families, all with the p.C218G mutation in WNT1. Clinical assessments showed no apparent dysmorphia or features similar to typical osteogenesis imperfecta (OI). Biochemistry revealed no changes in parameters of calcium metabolism and bone turnover markers. Fracture frequencies varied, but all subjects had sustained at least one fracture and 4 had a pathological fracture history. Plain radiographs showed osteopenic appearance, loss in vertebral height, and thin diaphyses of the long bones. Bone densitometry showed the BMD to be below normal median in all subjects and the bone mass deficit seemed to be more severe in older participants. Bone histomorphometry revealed a low turnover osteoporosis in 2 subjects at ages 14 and 16 years. These findings are congruent with earlier findings in adult patients and indicate that WNT1 osteoporosis causes significant skeletal changes already in early childhood and impairs bone mass gain during pubertal years. Genetic testing of children or close relatives of affected individuals is recommended for appropriate preventive measures. (c) 2016 American Society for Bone and Mineral Research.
  •  
9.
  • Pettersson, M., et al. (författare)
  • Copy Number Variants Are Enriched in Individuals With Early-Onset Obesity and Highlight Novel Pathogenic Pathways
  • 2017
  • Ingår i: Journal of Clinical Endocrinology & Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 102:8, s. 3029-3039
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Only a few genetic causes for childhood obesity have been identified to date. Copy number variants (CNVs) are known to contribute to obesity, both syndromic (15q11.2 deletions, Prader-Willi syndrome) and nonsyndromic (16p11.2 deletions) obesity. Objective: To study the contribution of CNVs to early-onset obesity and evaluate the expression of candidate genes in subcutaneous adipose tissue. Design and Setting: A case-control study in a tertiary academic center. Participants: CNV analysis was performed on 90 subjects with early-onset obesity and 67 normalweight controls. Subcutaneous adipose tissue from body mass index-discordant siblings was used for the gene expression analyses. Main Outcome Measures: We used custom high-density array comparative genomic hybridization with exon resolution in 1989 genes, including all known obesity loci. The expression of candidate genes was assessed using microarray analysis of messenger RNA from subcutaneous adipose tissue. Results: We identified rare CNVs in 17 subjects (19%) with obesity and 2 controls (3%). In three cases (3%), the identified variant involved a known syndromic lesion (22q11.21 duplication, 1q21.1 deletion, and 16p11.2 deletion, respectively), although the others were not known. Seven CNVs in 10 families were inherited and segregated with obesity. Expression analysis of 37 candidate genes showed discordant expression for 10 genes (PCM1, EFEMP1, MAMLD1, ACP6, BAZ2B, SORBS1, KLF15, MACROD2, ATR, and MBD5). Conclusions: Rare CNVs contribute possibly pathogenic alleles to a substantial fraction of children with early-onset obesity. The involved genes might provide insights into pathogenic mechanisms and involved cellular pathways. These findings highlight the importance of CNV screening in children with early-onset obesity.
  •  
10.
  • Pihlstrom, S, et al. (författare)
  • A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells
  • 2022
  • Ingår i: Frontiers in molecular biosciences. - : Frontiers Media SA. - 2296-889X. ; 9, s. 1032026-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we developed an in vitro technique to transdifferentiate human dermal fibroblasts into osteoblast-like cells. Bone marrow-derived mesenchymal stem cells, the true progenitors of osteoblasts, were utilized as reference cell lines. We characterized the osteoblastic differentiation in the two cell types using transcriptomics and quantitative MS-based proteomics and phosphoproteomics. The osteoblastic-like phenotype was confirmed in both cell types by positive alkaline phosphatase and mineralization staining methods. In addition, both cell types showed altered gene and protein profiles in compliance with an osteoblastic differentiation.
  •  
11.
  • Enlund-Cerullo, M, et al. (författare)
  • Genetic Variation of the Vitamin D Binding Protein Affects Vitamin D Status and Response to Supplementation in Infants
  • 2019
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 104:11, s. 5483-5498
  • Tidskriftsartikel (refereegranskat)abstract
    • ContextSingle nucleotide polymorphisms (SNPs) of the vitamin D binding protein encoding the GC (group component) gene affect 25-hydroxyvitamin D (25OHD) concentrations, but their influence on vitamin D status and response to vitamin D supplementation in infants is unknown.ObjectiveTo study GC genotype–related differences in 25OHD concentrations and the response to supplementation during a vitamin D intervention study in infants.DesignIn this randomized controlled trial, healthy term infants received vitamin D3 (10 or 30 μg/d) from 2 weeks to 24 months of age. GC SNPs rs2282679, rs4588, rs7041, and rs1155563 were genotyped. rs4588/7041 diplotype and haplotypes of rs2282679, rs4588, and rs7041 (Haplo3SNP) and of all four SNPs (Haplo4SNP) were determined.Main Outcome Measures25OHD measured in cord blood at birth and at 12 and 24 months during intervention.ResultsA total of 913 infants were included. Minor allele homozygosity of all studied GC SNPs, their combined haplotypes, and rs4588/rs7041 diplotype 2/2 were associated with lower 25OHD concentrations at all time points in one or both intervention groups [analysis of covariance (ANCOVA) P < 0.043], with the exception of rs7041, which did not affect 25OHD at birth. In the high-dose supplementation group receiving 30 μg/d vitamin D3, but not in those receiving 10 µg/d, genotype of rs2282679, rs4588, and rs7041; diplotype; and Haplo3SNP significantly affected intervention response (repeated measurement ANCOVA Pinteraction < 0.019). Minor allele homozygotes had lower 25OHD concentrations and smaller increases in 25OHD throughout the intervention.ConclusionsIn infants, vitamin D binding protein genotype affects 25OHD concentration and efficiency of high-dose vitamin D3 supplementation.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Makitie, R. E., et al. (författare)
  • An ARHGAP25 variant links aberrant Rac1 function to early-onset skeletal fragility
  • 2021
  • Ingår i: JBMR Plus. - : Wiley. - 2473-4039. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5 ' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. (c) 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
18.
  • Pekkinen, M., et al. (författare)
  • FGF23 gene variation and its association with phosphate homeostasis and bone mineral density in Finnish children and adolescents
  • 2015
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 1873-2763 .- 8756-3282. ; 71, s. 124-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibroblast growth factor 23 (FGF23), a bone-derived hormone, participates in the hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25-dihydroxyvitamin D, plasma phosphate (Pi), and diet. Inappropriately high serum FGF23, seen in certain genetic and acquired disorders, results in urinary phosphate wasting and impaired bone mineralization. This study investigated the impact of FGF23 gene variation on phosphate homeostasis and bone health. The study included 183 children and adolescents (110 girls) aged 7-19 years (median 13.2years). Urine and blood parameters of calcium and phosphate homeostasis were analyzed. Bone characteristics were quantified by DXA and peripheral quantitative computed tomography (pQCT). Genetic FGF23 variation was assessed by direct sequencing of coding exons and flanking intronic regions. Nine FGF23 polymorphisms were detected; three of them were common: rs3832879 (c.212-37insC), rs7955866 (c.716C>T, p.T239M) and rs11063112 (c.2185A>T). Four different haplotypes and six different diplotypes were observed among these three polymorphisms. The variations in FGF23 significantly associated with plasma PTH and urinary Pi excretion, even after adjusting for relevant covariates. FGF23 variations independently associated with total hip BMD Z-score, but not with other bone outcomes. In instrument analysis, genetic variance in FGF23 was considered a weak instrument as it only induced small variations in circulating FGF23, PTH and Pi concentrations (F statistic less than 10). The observed associations between FGF23 variations and circulating PTH, and Pi excretion and total hip BMD Z-scores suggest that FGF23 polymorphisms may play a role in mineral homeostasis and bone metabolism.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Vakkilainen, S, et al. (författare)
  • The human long non-coding RNA gene RMRP has pleiotropic effects and regulates cell-cycle progression at G2
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 13758-
  • Tidskriftsartikel (refereegranskat)abstract
    • RMRP was the first non-coding nuclear RNA gene implicated in a disease. Its mutations cause cartilage-hair hypoplasia (CHH), an autosomal recessive skeletal dysplasia with growth failure, immunodeficiency, and a high risk for malignancies. This study aimed to gain further insight into the role of RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) in cellular physiology and disease pathogenesis. We combined transcriptome analysis with single-cell analysis using fibroblasts from CHH patients and healthy controls. To directly assess cell cycle progression, we followed CHH fibroblasts by pulse-labeling and time-lapse microscopy. Transcriptome analysis identified 35 significantly upregulated and 130 downregulated genes in CHH fibroblasts. The downregulated genes were significantly connected to the cell cycle. Multiple other pathways, involving regulation of apoptosis, bone and cartilage formation, and lymphocyte function, were also affected, as well as PI3K-Akt signaling. Cell-cycle studies indicated that the CHH cells were delayed specifically in the passage from G2 phase to mitosis. Our findings expand the mechanistic understanding of CHH, indicate possible pathways for therapeutic intervention and add to the limited understanding of the functions of RMRP.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Loid, P, et al. (författare)
  • Targeted Exome Sequencing of Genes Involved in Rare CNVs in Early-Onset Severe Obesity
  • 2022
  • Ingår i: Frontiers in genetics. - : Frontiers Media SA. - 1664-8021. ; 13, s. 839349-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Rare copy number variants (CNVs) have been associated with the development of severe obesity. However, the potential disease-causing contribution of individual genes within the region of CNVs is often not known.Objective: Screening of rare variants in genes involved in CNVs in Finnish patients with severe early-onset obesity to find candidate genes linked to severe obesity.Methods: Custom-made targeted exome sequencing panel to search for rare (minor allele frequency &lt;0.1%) variants in genes affected by previously identified CNVs in 92 subjects (median age 14 years) with early-onset severe obesity (median body mass index (BMI) Z-score + 4.0).Results: We identified thirteen rare heterozygous variants of unknown significance in eleven subjects in twelve of the CNV genes. Two rare missense variants (p.Pro405Arg and p.Tyr232Cys) were found in SORCS1, a gene highly expressed in the brain and previously linked to diabetes risk. Four rare variants were in genes in the proximal 16p11.2 region (a frameshift variant in TAOK2 and missense variants in SEZ6L2, ALDOA and KIF22) and three rare missense variants were in genes in the 22q11.21 region (AIFM3, ARVCF and KLHL22).Conclusion: We report several rare variants in CNV genes in subjects with childhood obesity. However, the role of the individual genes in the previously identified rare CNVs to development of obesity remains uncertain. More studies are needed to understand the potential role of the specific genes within obesity associated CNVs.
  •  
30.
  • Makitie, RE, et al. (författare)
  • A Novel IFITM5 Variant Associated with Phenotype of Osteoporosis with Calvarial Doughnut Lesions: A Case Report
  • 2021
  • Ingår i: Calcified tissue international. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 109:6, s. 626-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) and other decreased bone density disorders comprise a heterogeneous group of heritable diseases with skeletal fragility. Recently, it was discovered that mutations in SGMS2, encoding sphingomyelin synthetase 2, result in aberrant sphingomyelin metabolism and lead to a novel form of OI termed osteoporosis with calvarial doughnut lesions (OP-CDL) with moderate to severe skeletal fragility and variable cranial hyperostotic lesions. This study describes a Japanese family with the skeletal phenotype of OP-CDL. The affected individuals have moderately severe, childhood-onset skeletal fragility with multiple long-bone fractures, scoliosis and bone deformities. In addition, they exhibit multiple CDLs or calvarial bumps with central radiolucency and peripheral radiopacity. However, SGMS2 sequencing was normal. Instead, whole-exome sequencing identified a novel IFITM5 missense mutation c.143A>G (p.N48S) (classified as a VUS by ACMG). IFITM5 encodes an osteoblast-restricted protein BRIL and a recurrent c.-14C>T mutation in its 5' UTR region results in OI type V, a distinctive subtype of OI associated with hyperplastic callus formation and ossification of the interosseous membranes. The patients described here have a phenotype clearly different from OI type V and with hyperostotic cranial lesions, feature previously unreported in association with IFITM5. Our findings expand the genetic spectrum of OP-CDL, indicate diverse phenotypic consequences of pathogenic IFITM5 variants, and imply an important role for BRIL in cranial skeletogenesis.
  •  
31.
  •  
32.
  • Markula-Patjas, KP, et al. (författare)
  • High adiposity and serum leptin accompanied by altered bone turnover markers in severe juvenile idiopathic arthritis
  • 2014
  • Ingår i: The Journal of rheumatology. - : The Journal of Rheumatology. - 0315-162X .- 1499-2752. ; 41:12, s. 2474-2481
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate interactions between skeleton and adipose tissue, and association of adipokines and bone turnover markers with disease-related factors in patients with severe juvenile idiopathic arthritis (JIA).Methods.Forty-nine patients (median age 14.8 yrs, median disease duration 10.2 yrs) with refractory polyarticular JIA and 89 sex-matched and age-matched healthy controls participated in the study. Study subjects underwent clinical examination, body composition assessment with dual-energy X-ray absorptiometry, and analyses for leptin, adiponectin, and bone turnover markers.Results.Patients with JIA were shorter and more often overweight (p = 0.001) or obese (p < 0.001) than controls. They had significantly higher serum leptin, even when adjusted for fat mass (p < 0.001), than did controls. Adiponectin did not differ between the groups. Concentration of carboxyterminal telopeptide of type I collagen was higher (p = 0.006) in patients. The inverse association between leptin and bone turnover markers disappeared in controls but was strengthened in patients when adjusted for fat mass. Leptin, adiponectin, or bone markers did not associate with variables of disease activity.Conclusion.Patients with severe JIA had high adiposity accompanied by increased bone resorption. Their serum leptin was higher, even independently of fat mass. Leptin tended to associate inversely with bone turnover markers but did not associate with variables of disease activity.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy