SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peled Emanuel) "

Sökning: WFRF:(Peled Emanuel)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rehnlund, David, 1986- (författare)
  • Insights into Electrochemical Energy Storage by use of Nanostructured Electrodes
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Template-assisted electrodeposition is a powerful technique for fabricating complex nanostructured electrodes. Through the use of pulsed-electrodeposition nanostructured electrodes of Al, Cu and Sn have been realised and subsequently coated electrochemically with V2O5, MnxO, Li, Cu2O and a polymer electrolyte. Nanorods with a multi-layered Cu2O/Cu structure have likewise been produced through electrodeposition. Nanostructured electrodes are ideal for studying electrochemical energy storage and have as such been used to investigate the electrochemistry of conversion and alloying reactions in detail.Key properties of the Cu2O conversion reaction were found to be dependent on the particle size. Prolonged cycling was seen to induce an electrochemical milling process which reduced the particle size. This process was found to improve the cell capacity retention due to improved accessibility of the material. The redox potential at which the particles react was found to be size dependent as smaller particles reacted at lower potentials.The Li-alloying reaction was also investigated by analysing several different alloy-forming materials. All materials exhibited a decline in capacity during cell cycling. This decline was observed to be time dependent and could as such be explained by a diffusion limited process. Moreover, the capacity losses were found to occur during partial lithiation of the electrode material leading to Li trapping in the electrode material. Li trapping was also observed for commonly used anode current collectors as the metals have some solubility for Li. Conducting boron-doped diamond electrodes were however seen to be resistant to Li diffusion and are therefore recommended as viable current collectors for anodes handling metallic lithium (i.e. Li-alloys and Li metal).
  •  
2.
  • Roberts, Matthew, et al. (författare)
  • 3D lithium ion batteries-from fundamentals to fabrication
  • 2011
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 0959-9428 .- 1364-5501. ; 21:27, s. 9876-9890
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D microbatteries are proposed as a step change in the energy and power per footprint of surface mountable rechargeable batteries for microelectromechanical systems (MEMS) and other small electronic devices. Within a battery electrode, a 3D nanoarchitecture gives mesoporosity, increasing power by reducing the length of the diffusion path; in the separator region it can form the basis of a robust but porous solid, isolating the electrodes and immobilising an otherwise fluid electrolyte. 3D microarchitecture of the whole cell allows fabrication of interdigitated or interpenetrating networks that minimise the ionic path length between the electrodes in a thick cell. This article outlines the design principles for 3D microbatteries and estimates the geometrical and physical requirements of the materials. It then gives selected examples of recent progress in the techniques available for fabrication of 3D battery structures by successive deposition of electrodes, electrolytes and current collectors onto microstructured substrates by self-assembly methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy