SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Penuelas J.) "

Sökning: WFRF:(Penuelas J.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  •  
3.
  • Sabatini, F. M., et al. (författare)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
4.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
5.
  • Thomas, H. J.D., et al. (författare)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
6.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
7.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
8.
  • van der Plas, F., et al. (författare)
  • Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality
  • 2018
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 21:1, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
  •  
9.
  •  
10.
  • Pihl, E., et al. (författare)
  • Ten new insights in climate science 2020- A horizon scan
  • 2020
  • Ingår i: Global Sustainability. - : Cambridge University Press. - 2059-4798.
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-technical summary We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments. Technical summary A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost-benefit ratio and new perspectives on the potential for green growth in the short- A nd long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations. Social media summary Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science. 
  •  
11.
  • Nogué, Sandra, et al. (författare)
  • The human dimension of biodiversity changes on islands
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 372:6541, s. 488-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.
  •  
12.
  • Walker, Anthony P., et al. (författare)
  • Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:5, s. 2413-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
  •  
13.
  • Fernandez-Martinez, M., et al. (författare)
  • Nutrient scarcity as a selective pressure for mast seeding
  • 2019
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast seeding is one of the most intriguing reproductive traits in nature. Despite its potential drawbacks in terms of fitness, the widespread existence of this phenomenon suggests that it should have evolutionary advantages under certain circumstances. Using a global dataset of seed production time series for 219 plant species from all of the continents, we tested whether masting behaviour appears predominantly in species with low foliar nitrogen and phosphorus concentrations when controlling for local climate and productivity. Here, we show that masting intensity is higher in species with low foliar N and P concentrations, and especially in those with imbalanced N/P ratios, and that the evolutionary history of masting behaviour has been linked to that of nutrient economy. Our results support the hypothesis that masting is stronger in species growing under limiting conditions and suggest that this reproductive behaviour might have evolved as an adaptation to nutrient limitations and imbalances.
  •  
14.
  • Buker, P., et al. (författare)
  • DO3SE modelling of soil moisture to determine ozone flux to forest trees
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:12, s. 5537-5562
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO3SE (Deposition of O-3 for Stomatal Exchange) model is an established tool for estimating ozone (O-3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O-3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O-3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (g(sto)), and subsequent O-3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on g(sto) for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing g(sto) relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to g(sto), to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, g(sto) and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum g(sto), soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate g(sto) directly to soil water content and potential provide adequate estimates of soil moisture and influence on g(sto) such that they are suitable to be used to assess the potential risk posed by O-3 to forest trees across Europe.
  •  
15.
  • Carter, M. S., et al. (författare)
  • Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:10, s. 3739-3755
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from -519 to + 6890 mg CH4-Cm-2 yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-Nm(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-C m(-2) yr(-1). Drought and long-term drainage from -519 to + 6890 mg CH4-C m(-2) yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-N m(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-Cm-2 yr(-1). Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes.
  •  
16.
  • Franklin, Oskar, et al. (författare)
  • Organizing principles for vegetation dynamics
  • 2020
  • Ingår i: Nature plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:5, s. 444-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change. Integrating natural selection and other organizing principles into next-generation vegetation models could render them more theoretically sound and useful for earth system applications and modelling climate impacts.
  •  
17.
  • Menzel, Annette, et al. (författare)
  • European phenological response to climate change matches the warming pattern
  • 2006
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 12:10, s. 1969-1976
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade -1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species' phenology is responsive to temperature of the preceding months (mean advance of spring/summer by 2.5 days °C -1, delay of leaf colouring and fall by 1.0 day °C -1). The pattern of observed change in spring efficiently matches measured national warming across 19 European countries (correlation coefficient r = -0.69, P < 0.001).
  •  
18.
  • Niinemets, Ue., et al. (författare)
  • Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 8:8, s. 2209-2246
  • Tidskriftsartikel (refereegranskat)abstract
    • The capacity for volatile isoprenoid production under standardized environmental conditions at a certain time (E-S, the emission factor) is a key characteristic in constructing isoprenoid emission inventories. However, there is large variation in published E-S estimates for any given species partly driven by dynamic modifications in E-S due to acclimation and stress responses. Here we review additional sources of variation in E-S estimates that are due to measurement and analytical techniques and calculation and averaging procedures, and demonstrate that estimations of E-S critically depend on applied experimental protocols and on data processing and reporting. A great variety of experimental setups has been used in the past, contributing to study-to-study variations in E-S estimates. We suggest that past experimental data should be distributed into broad quality classes depending on whether the data can or cannot be considered quantitative based on rigorous experimental standards. Apart from analytical issues, the accuracy of E-S values is strongly driven by extrapolation and integration errors introduced during data processing. Additional sources of error, especially in meta-database construction, can further arise from inconsistent use of units and expression bases of E-S. We propose a standardized experimental protocol for BVOC estimations and highlight basic meta-information that we strongly recommend to report with any E-S measurement. We conclude that standardization of experimental and calculation protocols and critical examination of past reports is essential for development of accurate emission factor databases.
  •  
19.
  • Niinemets, Ü., et al. (författare)
  • The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 7:6, s. 1809-1832
  • Tidskriftsartikel (refereegranskat)abstract
    • In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993), instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels) and various aggregated ES schemes are not compatible for different integration models. The summarized information collectively emphasizes the need to update model algorithms by including missing environmental and physico-chemical controls, and always to define ES within the proper context of model structure and spatial and temporal resolution.
  •  
20.
  • Dox, Inge, et al. (författare)
  • Wood growth phenology and its relationship with leaf phenology in deciduous forest trees of the temperate zone of Western Europe
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood growth phenology of temperate deciduous trees is less studied than leaf phenology, hindering the understanding of their interaction. In order to describe the variability of wood growth and leaf phenology across locations, species and years, we performed phenological observations of both xylem formation and leaf development in three typical temperate forest areas in Western Europe (Northern Spain, Belgium and Southern Norway) for four common deciduous tree species (Fagus sylvatica L., Betula pendula Roth., Populus tremula L. and Quercus robur L.) in 2018, 2019 and 2020, with only beech and birch being studied in the final year. The earliest cambial reactivation in spring occurred at the Belgian stands while the end of cambial activity and wood growth cessation generally occurred first in Norway. Results did not show much consistency across species, sites or years and lacked general patterns, except for the end of cambial activity, which occurred generally first in birch. For all species, the site variation in phenophases (up to three months) was substantially larger than the inter-annual variability (up to six weeks). The timeline of bud-burst and cambium reactivation, as well as of foliar senescence and cessation of wood growth, were variable across species even with the same type of wood porosity. Our results suggest that wood growth and leaf phenology are less well connected than previously thought. Linear models showed that temperature is the dominant driver of wood growth phenology, but with climate zone also having an effect, especially at the start of the growing season. Drought conditions, on the other hand, have a larger effect on the timing of wood growth cessation. Our comprehensive analysis represents the first large regional assessment of wood growth phenology in common European deciduous tree species, providing not only new fundamental insights but also a unique dataset for future modelling applications.
  •  
21.
  • Fan, Lei, et al. (författare)
  • Satellite-observed pantropical carbon dynamics
  • 2019
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 5:9, s. 944-951
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in terrestrial tropical carbon stocks have an important role in the global carbon budget. However, current observational tools do not allow accurate and large-scale monitoring of the spatial distribution and dynamics of carbon stocks1. Here, we used low-frequency L-band passive microwave observations to compute a direct and spatially explicit quantification of annual aboveground carbon (AGC) fluxes and show that the tropical net AGC budget was approximately in balance during 2010 to 2017, the net budget being composed of gross losses of −2.86 PgC yr−1 offset by gross gains of −2.97 PgC yr−1 between continents. Large interannual and spatial fluctuations of tropical AGC were quantified during the wet 2011 La Niña year and throughout the extreme dry and warm 2015–2016 El Niño episode. These interannual fluctuations, controlled predominantly by semiarid biomes, were shown to be closely related to independent global atmospheric CO2 growth-rate anomalies (Pearson’s r = 0.86), highlighting the pivotal role of tropical AGC in the global carbon budget.
  •  
22.
  • Haesen, Stef, et al. (författare)
  • ForestClim : Bioclimatic variables for microclimate temperatures of European forests
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:11, s. 2886-2892
  • Tidskriftsartikel (refereegranskat)abstract
    • Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 x 25 m2 resolution.
  •  
23.
  •  
24.
  • Harrison, Sandy P., et al. (författare)
  • Eco-evolutionary optimality as a means to improve vegetation and land-surface models
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:6, s. 2125-2141
  • Forskningsöversikt (refereegranskat)abstract
    • Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
  •  
25.
  • Niinemets, Ue., et al. (författare)
  • The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 7:7, s. 2203-2223
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (E-S, the emission factor) and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, E-S has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of E-S under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration) and developmental (leaf age) variations in E-S values operating at medium to long time scales. These biological factors can alter species-specific E-S values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (24)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (25)
Författare/redaktör
Peñuelas, J. (14)
Peñuelas, Josep (10)
Björkman, Anne, 1981 (5)
Cornelissen, J. H. C ... (4)
Te Beest, Mariska (4)
Cooper, E J (3)
visa fler...
Ciais, Philippe (3)
Arneth, Almut (3)
Manzoni, Stefano (3)
van Bodegom, Peter M ... (3)
Björk, Robert G., 19 ... (3)
Levesque, E (3)
Monson, R. K. (3)
Niinemets, Ue. (3)
Harrison, Sandy P. (3)
Olofsson, Johan (3)
Wipf, S (3)
Soudzilovskaia, N. A ... (3)
Soudzilovskaia, Nade ... (3)
Hallinger, Martin (3)
Iversen, Colleen M. (3)
Diaz, S (2)
Diaz, Sandra (2)
Wang, W. (2)
Eskelinen, A. (2)
Stocker, Benjamin D. (2)
Alatalo, J. M. (2)
Little, C. J. (2)
Poschlod, Peter (2)
Dainese, Matteo (2)
Brännström, Åke, 197 ... (2)
Estiarte, Marc (2)
Jentsch, Anke (2)
Reich, Peter B (2)
Forbes, B. C. (2)
Niinemets, Ulo (2)
Ozinga, Wim A. (2)
Vellend, Mark (2)
Chapin, F. Stuart (2)
Speed, J. D. M. (2)
Kaarlejärvi, Elina, ... (2)
Ozinga, W. A. (2)
Bastos, Ana (2)
van Bodegom, P. M. (2)
Buchmann, Nina (2)
Van Meerbeek, Koenra ... (2)
Wilmking, M. (2)
Myers-Smith, Isla H. (2)
Kattge, Jens (2)
Manning, Peter (2)
visa färre...
Lärosäte
Göteborgs universitet (10)
Lunds universitet (10)
Sveriges Lantbruksuniversitet (8)
Umeå universitet (7)
Stockholms universitet (4)
Kungliga Tekniska Högskolan (2)
visa fler...
IVL Svenska Miljöinstitutet (2)
Nordiska Afrikainstitutet (1)
Uppsala universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy