SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perakis Fivos) "

Sökning: WFRF:(Perakis Fivos)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amann-Winkel, Katrin, et al. (författare)
  • Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 mu s. Obtaining experimental evidence of a liquid-liquid phase transition in supercooled water is challenging due to the rapid crystallization. Here the authors drive low-density amorphous ice to the conditions of liquid-liquid coexistence using ultrafast laser heating and observe the liquid-liquid phase transition with femtosecond x-ray laser pulses.
  •  
2.
  • Berkowicz, Sharon, et al. (författare)
  • Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:45, s. 25490-25499
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of Stokes–Einstein relation in liquid water is one of the many anomalies that take place upon cooling and indicates the decoupling of diffusion and viscosity. It is hypothesized that these anomalies manifest due to the appearance of nanometer-scale spatial fluctuations, which become increasingly pronounced in the supercooled regime. Here, we explore the validity of the Stokes–Einstein relation in supercooled water using nanomolecular probes. We capture the diffusive dynamics of the probes using dynamic light scattering and target dynamics at different length scales by varying the probe size, from ≈100 nm silica spheres to molecular-sized polyhydroxylated fullerenes (≈1 nm). We find that all the studied probes, independent of size, display similar diffusive dynamics with an Arrhenius activation energy of ≈23 kJ mol−1. Analysis of the diffusion coefficient further indicates that the probes, independent of their size, experience similar dynamic environment, which coincides with the macroscopic viscosity, while single water molecules effectively experience a comparatively lower viscosity. Finally, we conclude that our results indicate that the Stokes–Einstein relation is preserved for diffusion of probes in supercooled water T ≥ 260 K with size as small as ≈1 nm.
  •  
3.
  • Berkowicz, Sharon, et al. (författare)
  • Nanofocused x-ray photon correlation spectroscopy
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we demonstrate an experimental proof of concept for nanofocused x-ray photon correlation spectroscopy, a technique sensitive to nanoscale fluctuations present in a broad range of systems. The experiment, performed at the NanoMAX beamline at MAX IV, uses a novel event-based x-ray detector to capture nanoparticle structural dynamics with microsecond resolution. By varying the nanobeam size from σ=88 nm to σ=2.5μm, we quantify the effect of the nanofocus on the small-angle scattering lineshape and on the diffusion coefficients obtained from nano-XPCS. We observe that the use of nanobeams leads to a multifold increase in speckle contrast, which greatly improves the experimental signal-to-noise ratio, quantified from the two-time intensity correlation functions. We conclude that it is possible to account for influence of the high beam divergence on the lineshape and measured dynamics by including a convolution with the nanobeam profile in the model.
  •  
4.
  • Berkowicz, Sharon, 1994-, et al. (författare)
  • Resolving nanoscale dynamics during a liquid-liquid transition in supercooled glycerol-water solutions
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • It is proposed that a liquid-liquid transition (LLT), related to the hypothesized transition between high- and low-density liquids (HDL, LDL) in pure water, also exists in supercooled aqueous mixtures. However, experimental observations of the LLT in the supercooled solution is often complicated by the overlap with freezing. Here, we conducted an experiment probing the hypothesized LLT in deeply supercooled 16.5 mol% glycerol-water solution, combining X-ray photon correlation spectroscopy (XPCS), ultra small-angle X-ray scattering (USAXS) and wide-angle X-ray scattering (WAXS). This approach allows us to capture simultaneous, discontinuous structural and dynamic changes within the supercooled liquid following quenching to cryogenic temperatures (172-182 K). We observe changes in the inter-atomic liquid structure (from WAXS) as well as in the nanoscale structure and dynamics (from USAXS/XPCS), resembling a first-order LLT between HDL-like to LDL-like liquid. Importantly, we find that the LLT precedes the onset of ice crystalliization, which we can distinguish based on the advent of ice bragg peaks in WAXS. In addition, analysis of the two-time correlation (TTC) function from XPCS enables us to follow the dynamics during the LLT, which indicates super-diffusive ballistic-like motion and a gradual slowdown towards an arrested state upon freezing, consistent with an LLT via spinodal decomposition. We conclude that these results indicate the existence of a first-order LLT in supercooled glycerol-water solutions at intermediate glycerol concentrations, similar to that hypothesized for pure water at elevated pressures.
  •  
5.
  • Berkowicz, Sharon (författare)
  • The Role of Molecular Heterogeneity in the Structural Dynamics of Aqueous Solutions
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aqueous solutions constitute the basis of life, yet their complex and anomalous nature is far from well-understood. Transient molecular ordering gives rise to microscopic spatial liquid heterogeneities and fluctuations which are believed to play a key role in biochemical processes as well as in pure water, the latter of which could fundamentally alter our view on water as life's solvent. In this thesis, we experimentally investigate the structural dynamics in aqueous solutions with the aim to understand the role of molecular heterogeneity in the complex solution dynamics. To extract dynamic information, we utilize coherent light- and X-ray scattering techniques, such as dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS), which can resolve structural dynamics on a broad range of length and time scales. We explore the influence of hypothesized water fluctuations in the dynamics of simple model solutes, finding that their diffusive dynamic behaviour is effectively similar and independent of solute size down to molecular scale, whilst significantly different from that of single water molecules. Secondly, in a first proof-of-concept experiment, we successfully combine the spatial resolution of nanofocused coherent X-ray beams with dynamic measurements by XPCS, the results of which indicate that `nano-XPCS' could prove a valuable tool in the quest to resolve nanoscale fluctuations. Finally, an outlook is given where the next steps in these investigations are discussed, such as the use of aqueous-organic mixtures as model systems for spatially heterogeneous dynamics in biological solutions.
  •  
6.
  • Berkowicz, Sharon, 1994- (författare)
  • The Role of Molecular Heterogeneity in the Structural Dynamics of Aqueous Solutions
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The liquid-liquid critical point hypothesis suggests that liquid water exists in two liquid states with different local structures, so-called high- and low-density liquid (HDL, LDL). At ambient pressure water locally fluctuates between these two states, with the fluctuations becoming more pronounced as the liquid is supercooled. In this thesis, we explore the role of molecular heterogeneity in the structural dynamics of aqueous solutions, specifically investigating the interplay of different solutes in water with the hypothesized HDL-LDL fluctuations. In our experimental approach, we utilize coherent light and X-ray scattering techniques, including small- and wide-angle X-ray scattering (SAXS, WAXS), as well as correlation methods, such as dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS), that enable us to probe structural dynamics at a broad range of length and time scales. Using DLS, we measure the diffusive dynamic behaviour of differently sized nanomolecular probes in supercooled water, finding that it is effectively similar and independent of probe size down to molecular scales of ≈1 nm. In contrast to single water molecules, these probes experience a similar dynamic environment, which coincides with the bulk viscosity. These results could suggest that anomalous influence from the hypothesized water fluctuations becomes apparent first on sub-nm length scales. Furthermore, we explore how the presence of small polar-organic solutes modulates the water phase diagram, utilizing glycerol-water solutions as a model system. By outrunning freezing with the rapid evaporative cooling technique, combined with ultrafast X-ray scattering at X-ray free-electron lasers (XFELs), we are able to probe the liquid structure in deeply supercooled dilute glycerol-water solutions. Our findings indicate the existence of HDL- and LDL-like fluctuations upon supercooling, with a Widom line shifted to slightly lower temperatures compared to pure water. Further experiments on deeply supercooled glycerol-water solutions at intermediate glycerol concentrations, combining WAXS and SAXS/XPCS, provide additional insights. These results reveal a first-order-like liquid-liquid transition involving discontinuous changes in the inter-atomic liquid structure and nanoscale liquid dynamics, which precedes ice crystallization. Lastly, with the aim of developing powerful tools for resolving dynamics within spatially heterogeneous systems, including aqueous solutions, we combine the spatial resolution of nanofocused coherent X-ray beams with dynamic measurements by XPCS. Here, we successfully demonstrate a first proof-of-concept experiment of so-called nanofocused XPCS at MAX IV synchrotron radiation facility. In future experiments, we plan to go beyond standard XPCS at synchrotrons, towards accessing ultrafast atomic-scale liquid dynamics by X-ray speckle visibility spectroscopy (XSVS) at XFELs.
  •  
7.
  • Berkowicz, Sharon, 1994-, et al. (författare)
  • Unveiling the Structure and Thermodynamics of Deeply Supercooled Glycerol-Water Microdroplets with Ultrafast X-ray Scattering
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The liquid-liquid critical point (LLCP) hypothesis of water suggests that water exists in two structurally distinct liquid states, high- and low-density liquid (HDL, LDL), with an LLCP hidden in the supercooled regime at elevated pressures. However, its consequences for solvation and structural dynamics in aqueous solutions remain to be explored. Here, we probe the structure and thermodynamics of deeply supercooled microdroplets of prototypical aqueous solutions of glycerol. The combination of rapid evaporative cooling with ultrafast small- and wide-angle X-ray scatter-ing (SAXS, WAXS) allows us to outrun crystallization and gain access to the largely unexplored deeply supercooled dilute regime (3.2 mol% glycerol) down to T ≈ 229 K, which is not accessible by conventional cooling methods. The experimental results, and complementary molecular dynamics(MD) simulations, indicate an increase in the tetrahedral coordination and enhancement of HDL-and LDL-like density fluctuations upon supercooling. In addition, the extended temperature range of the MD simulations reveals a maximum in the isothermal compressibility at T ≈ 220 K, indicating the location of a Widom line shifted to slightly lower temperatures compared to that of pure water. We conclude that the apparent effect of the presence of glycerol molecules on the water hydrogen-bond structure resembles that of pressure. This opens the possibility to search for the existence of an LLCP in these aqueous solutions simply by varying the solute concentration.
  •  
8.
  • Bin, Maddalena, et al. (författare)
  • Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins
  • 2023
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 127:21, s. 4922-4930
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
  •  
9.
  • Bin, Maddalena, et al. (författare)
  • Wide-angle X-ray scattering and molecular dynamics simulations of supercooled protein hydration water
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:34, s. 18308-18313
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the mechanism responsible for the protein low-temperature crossover observed at T approximate to 220 K can help us improve current cryopreservation technologies. This crossover is associated with changes in the dynamics of the system, such as in the mean-squared displacement, whereas experimental evidence of structural changes is sparse. Here we investigate hydrated lysozyme proteins by using a combination of wide-angle X-ray scattering and molecular dynamics (MD) simulations. Experimentally we suppress crystallization by accurate control of the protein hydration level, which allows access to temperatures down to T = 175 K. The experimental data indicate that the scattering intensity peak at Q = 1.54 angstrom(-1), attributed to interatomic distances, exhibits temperature-dependent changes upon cooling. In the MD simulations it is possible to decompose the water and protein contributions and we observe that, while the protein component is nearly temperature independent, the hydration water peak shifts in a fashion similar to that of bulk water. The observed trends are analysed by using the water-water and water-protein radial distribution functions, which indicate changes in the local probability density of hydration water.
  •  
10.
  • Dallari, Francesco, et al. (författare)
  • Analysis Strategies for MHz XPCS at the European XFEL
  • 2021
  • Ingår i: Applied Sciences. - : MDPI AG. - 2076-3417. ; 11:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanometer length-scale holds precious information on several dynamical processes that develop from picoseconds to seconds. In the past decades, X-ray scattering techniques have been developed to probe the dynamics at such length-scales on either ultrafast (sub-nanosecond) or slow ((milli-)second) time scales. With the start of operation of the European XFEL, thanks to the MHz repetition rate of its X-ray pulses, even the intermediate mu s range have become accessible. Measuring dynamics on such fast timescales requires the development of new technologies such as the Adaptive Gain Integrating Pixel Detector (AGIPD). mu s-XPCS is a promising technique to answer many scientific questions regarding microscopic structural dynamics, especially for soft condensed matter systems. However, obtaining reliable results with complex detectors at free-electron laser facilities is challenging and requires more sophisticated analysis methods compared to experiments at storage rings. Here, we discuss challenges and possible solutions to perform XPCS experiments with the AGIPD at European XFEL; in particular, at the Materials Imaging and Dynamics (MID) instrument. We present our data analysis pipeline and benchmark the results obtained at the MID instrument with a well-known sample composed by silica nanoparticles dispersed in water.
  •  
11.
  • Esmaeildoost, Niloofar, et al. (författare)
  • Anomalous temperature dependence of the experimental x-ray structure factor of supercooled water
  • 2021
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 155:21, s. 214501-214501
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å-1, which covered the principal doublet of the x-ray structure factor of water. The oxygen-oxygen structure factor was obtained for temperatures down to 228.5 ± 0.6 K. Similar to previous studies, the second diffraction peak increased strongly in amplitude as the structural change accelerated toward a local tetrahedral structure upon deep supercooling. We also observed an anomalous trend for the second peak position of the oxygen-oxygen structure factor (q2). We found that q2 exhibits an unprecedented positive partial derivative with respect to temperature for temperatures below 236 K. Based on Fourier inversion of our experimental data combined with reference data, we propose that the anomalous q2 shift originates from that a repeat spacing in the tetrahedral network, associated with all peaks in the oxygen-oxygen pair-correlation function, gives rise to a less dense local ordering that resembles that of low-density amorphous ice. The findings are consistent with that liquid water consists of a pentamer-based hydrogen-bonded network with low density upon deep supercooling.
  •  
12.
  • Filianina, Mariia, 1992-, et al. (författare)
  • Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions
  • 2023
  • Ingår i: Journal of Physical Chemistry B. - 1520-6106 .- 1520-5207. ; 127:27, s. 6197-6204
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying protein interactions at low temperatures hasimportantimplications for optimizing cryostorage processes of biological tissue,food, and protein-based drugs. One of the major issues is relatedto the formation of ice nanocrystals, which can occur even in thepresence of cryoprotectants and can lead to protein denaturation.The presence of ice nanocrystals in protein solutions poses severalchallenges since, contrary to microscopic ice crystals, they can bedifficult to resolve and can complicate the interpretation of experimentaldata. Here, using a combination of small- and wide-angle X-ray scattering(SAXS and WAXS), we investigate the structural evolution of concentratedlysozyme solutions in a cryoprotected glycerol-water mixturefrom room temperature (T = 300 K) down to cryogenictemperatures (T = 195 K). Upon cooling, we observea transition near the melting temperature of the solution (T & AP; 245 K), which manifests both in the temperaturedependence of the scattering intensity peak position reflecting protein-proteinlength scales (SAXS) and the interatomic distances within the solvent(WAXS). Upon thermal cycling, a hysteresis is observed in the scatteringintensity, which is attributed to the formation of nanocrystallitesin the order of 10 nm. The experimental data are well described bythe two-Yukawa model, which indicates temperature-dependent changesin the short-range attraction of the protein-protein interactionpotential. Our results demonstrate that the nanocrystal growth yieldseffectively stronger protein-protein attraction and influencesthe protein pair distribution function beyond the first coordinationshell.
  •  
13.
  • Kim, Kyung Hwan, et al. (författare)
  • Anisotropic X-Ray Scattering of Transiently Oriented Water
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of similar to 0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.
  •  
14.
  • Kim, Kyung Hwan, et al. (författare)
  • Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 370:6519, s. 978-982
  • Tidskriftsartikel (refereegranskat)abstract
    • We prepared bulk samples of supercooled liquid water under pressure by isochoric heating of high-density amorphous ice to temperatures of 205 ± 10 kelvin, using an infrared femtosecond laser. Because the sample density is preserved during the ultrafast heating, we could estimate an initial internal pressure of 2.5 to 3.5 kilobar in the high-density liquid phase. After heating, the sample expanded rapidly, and we captured the resulting decompression process with femtosecond x-ray laser pulses at different pump-probe delay times. A discontinuous structural change occurred in which low-density liquid domains appeared and grew on time scales between 20 nanoseconds to 3 microseconds, whereas crystallization occurs on time scales of 3 to 50 microseconds. The dynamics of the two processes being separated by more than one order of magnitude provides support for a liquid-liquid transition in bulk supercooled water.
  •  
15.
  • Kim, Kyung Hwan, et al. (författare)
  • Maxima in the thermodynamic response and correlation functions of deeply supercooled water
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1589-1593
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond x-ray laser pulses were used to probe micrometer-sized water droplets that were cooled down to 227 kelvin in vacuum. Isothermal compressibility and correlation length were extracted from x-ray scattering at the low-momentum transfer region. The temperature dependence of these thermodynamic response and correlation functions shows maxima at 229 kelvin for water and 233 kelvin for heavy water. In addition, we observed that the liquids undergo the fastest growth of tetrahedral structures at similar temperatures. These observations point to the existence of a Widom line, defined as the locus of maximum correlation length emanating from a critical point at positive pressures in the deeply supercooled regime. The difference in the maximum value of the isothermal compressibility between the two isotopes shows the importance of nuclear quantum effects.
  •  
16.
  •  
17.
  • Kim, Kyung Hwan, et al. (författare)
  • Temperature-Independent Nuclear Quantum Effects on the Structure of Water
  • 2017
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 119:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005)]. Here, by performing wide-angle x-ray scattering of H2O and D2O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D2O is similar to H2O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H2O and D2O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.
  •  
18.
  • Ladd-Parada, Marjorie, 1985-, et al. (författare)
  • Following the Crystallization of Amorphous Ice after Ultrafast Laser Heating
  • 2022
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 126:11, s. 2299-2307
  • Tidskriftsartikel (refereegranskat)abstract
    • Using time-resolved wide-angle X-ray scattering, we investigated the early stages (10 μs–1 ms) of crystallization of supercooled water, obtained by the ultrafast heating of high- and low-density amorphous ice (HDA and LDA) up to a temperature T = 205 K ± 10 K. We have determined that the crystallizing phase is stacking disordered ice (Isd), with a maximum cubicity of χ = 0.6, in agreement with predictions from molecular dynamics simulations at similar temperatures. However, we note that a growing small portion of hexagonal ice (Ih) was also observed, suggesting that within our timeframe, Isd starts annealing into Ih. The onset of crystallization, in both amorphous ice, occurs at a similar temperature, but the observed final crystalline fraction in the LDA sample is considerably lower than that in the HDA sample. We attribute this discrepancy to the thickness difference between the two samples.
  •  
19.
  • Ladd-Parada, Marjorie, et al. (författare)
  • Using coherent X-rays to follow dynamics in amorphous ices
  • 2022
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 2:6, s. 1314-1323
  • Tidskriftsartikel (refereegranskat)abstract
    • Amorphous solid water plays an important role in our overall understanding of water's phase diagram. X-ray scattering is an important tool for characterising the different states of water, and modern storage ring and XFEL facilities have opened up new pathways to simultaneously study structure and dynamics. Here, X-ray photon correlation spectroscopy (XPCS) was used to study the dynamics of high-density amorphous (HDA) ice upon heating. We follow the structural transition from HDA to low-density amorphous (LDA) ice, by using wide-angle X-ray scattering (WAXS), for different heating rates. We used a new type of sample preparation, which allowed us to study μm-sized ice layers rather than powdered bulk samples. The study focuses on the non-equilibrium dynamics during fast heating, spontaneous transformation and crystallization. Performing the XPCS study at ultra-small angle (USAXS) geometry allows us to characterize the transition dynamics at length scales ranging from 60 nm–800 nm. For the HDA-LDA transition we observe a clear separation in three dynamical regimes, which show different dynamical crossovers at different length scales. The crystallization from LDA, instead, is observed to appear homogenously throughout the studied length scales.
  •  
20.
  • LaRue, Jerry, et al. (författare)
  • Symmetry-resolved CO desorption and oxidation dynamics on O/Ru(0001) probed at the C K-edge by ultrafast x-ray spectroscopy
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 157:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier.
  •  
21.
  • Li, Hailong, et al. (författare)
  • Intrinsic Dynamics of Amorphous Ice Revealed by a Heterodyne Signal in X-ray Photon Correlation Spectroscopy Experiments
  • 2023
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 14:49, s. 10999-11007
  • Tidskriftsartikel (refereegranskat)abstract
    • Unraveling the mechanism of water's glass transition and the interconnection between amorphous ices and liquid water plays an important role in our overall understanding of water. X-ray photon correlation spectroscopy (XPCS) experiments were conducted to study the dynamics and the complex interplay between the hypothesized glass transition in high-density amorphous ice (HDA) and the subsequent transition to low-density amorphous ice (LDA). Our XPCS experiments demonstrate that a heterodyne signal appears in the correlation function. Such a signal is known to originate from the interplay of a static component and a dynamic component. Quantitative analysis was performed on this heterodyne signal to extract the intrinsic dynamics of amorphous ice during the HDA-LDA transition. An angular dependence indicates non-isotropic, heterogeneous dynamics in the sample. Using the Stokes-Einstein relation to extract diffusion coefficients, the data are consistent with the scenario of static LDA islands floating within a diffusive matrix of high-density liquid water.
  •  
22.
  • Li, Hailong, et al. (författare)
  • Long-Range Structures of Amorphous Solid Water
  • 2021
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 125:48, s. 13320-13328
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) of amorphous solid water (ASW) were studied during vapor deposition and the heating process. From the diffraction patterns, the oxygen–oxygen pair distribution functions (PDFs) were calculated up to the eighth coordination shell and an r = 23 A°. The PDF of ASW obtained both during vapor deposition at 80 K as well as the subsequent heating are consistent with that of low-density amorphous ice. The formation and temperature-induced collapse of micropores were observed in the XRD data and in the FTIR measurements, more specifically, in the OH stretch and the dangling mode. Above 140 K, ASW crystallizes into a stacking disordered ice, Isd. It is observed that the fourth, fifth, and sixth peaks in the PDF, corresponding to structural arrangements between 8 and 12 Å, are the most sensitive to the onset of crystallization. 
  •  
23.
  • Mariedahl, Daniel, et al. (författare)
  • X-ray Scattering and O-O Pair-Distribution Functions of Amorphous Ices
  • 2018
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 122:30, s. 7616-7624
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure factor and oxygen-oxygen pair distribution functions of amorphous ices at liquid nitrogen temperature (T = 77 K) have been derived from wide-angle X-ray scattering (WAXS) up to interatomic distances of r = 23 angstrom, where local structure differences between the amorphous ices can be seen for the entire range. The distances to the first coordination shell for low-, high-, and very-high-density amorphous ice (LDA, HDA, VHDA) were determined to be 2.75, 2.78, and 2.80 angstrom, respectively, with high accuracy due to measurements up to a large momentum transfer of 23 angstrom(-1). Similarities in pair-distribution functions between LDA and supercooled water at 254.1 K, HDA and liquid water at 365.9 K, and VHDA and high-pressure liquid water were found up to around 8 angstrom, but beyond that at longer distances, the similarities were lost. In addition, the structure of the high-density amorphous ices was compared to high-pressure crystalline ices IV, IX, and XII, and conclusions were drawn about the local ordering.
  •  
24.
  • Mariedahl, Daniel, et al. (författare)
  • X-ray studies of the transformation from high- to low-density amorphous water
  • 2019
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 377:2146
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report about the structural evolution during the conversion from high-density amorphous ices at ambient pressure to the low-density state. Using high-energy X-ray diffraction, we have monitored the transformation by following in reciprocal space the structure factor SOO(Q) and derived in real space the pair distribution function gOO(r). Heating equilibrated high-density amorphous ice (eHDA) at a fast rate (4Kmin-1), the transition to the low-density form occurs very rapidly, while domains of both high-and low-density coexist. On the other hand, the transition in the case of unannealed HDA (uHDA) and very-high-density amorphous ice is more complex and of continuous nature. The direct comparison of eHDA and uHDA indicates that the molecular structure of uHDA contains a larger amount of tetrahedral motives. The different crystallization behaviour of the derived low-density amorphous states is interpreted as emanating from increased tetrahedral coordination present in uHDA. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
  •  
25.
  • Nilsson, Anders, et al. (författare)
  • Probing water with X-ray lasers
  • 2016
  • Ingår i: Advances in physics: X. - : Informa UK Limited. - 2374-6149. ; 1:2, s. 226-245
  • Forskningsöversikt (refereegranskat)abstract
    • Here, we discuss three cases where the X-ray free-electron laser, the Linac Coherent Light Source, has been used to probe water. The ability to cool water very rapidly down to 227 K and to probe it with ultrashort (50 fs) X-ray pulses before freezing has allowed for investigating water structure below the previous limit of homogeneous ice nucleation. It was found that at the temperature where the thermodynamic response functions, such as heat capacity and isothermal compressibility, seem to diverge there is no discontinuous change in structure, but instead an accelerated transformation from a disordered state to a strongly tetrahedral. The ice nucleation rate in bulk-like micron-sized water droplets could be determined for temperatures down to 227 K and was shown to be similar to 8 orders of magnitude lower than previous data for nanodroplets. The application to X-ray spectroscopy is discussed based on measurements at high X-ray fluence where multiple valence-hole states can be generated. Finally, a perspective to the future is presented regarding X-ray photon correlation spectroscopy with which true equilibrium dynamical properties can be studied.
  •  
26.
  • Nilsson, Anders, et al. (författare)
  • X-Ray Studies of Water
  • 2020
  • Ingår i: Synchrotron Light Sources and Free-Electron Lasers. - Cham : Springer. - 9783030232009 ; , s. 1935-1988
  • Bokkapitel (refereegranskat)abstract
    • In this chapter we discuss a number of x-ray techniques that have been used at synchrotron radiation and x-ray free-electron laser facilities to study the water structure and dynamics as well as its thermodynamic response functions. The focus of these investigations is on temperature-dependent properties ranging from hot water at 363 K down to deep supercooled conditions at 227 K. We review the experimental information content obtained from x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), or often denoted resonant x-ray inelastic scattering (RIXS), wide- (WAXS) and small-angle x-ray scattering (SAXS), x-ray photon correlation spectroscopy (XPCS), and lastly x-ray speckle visibility spectroscopy (XSVS). We propose a number of hypotheses related to water that can be tested against the information obtained from the various x-ray techniques. The picture emerging which is mostly consistent with all the information content is the following:
  •  
27.
  • Pathak, Harshad, et al. (författare)
  • Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid–liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.
  •  
28.
  • Pathak, Harshad, et al. (författare)
  • Temperature dependent anomalous fluctuations in water : shift of approximate to 1 kbar between experiment and classical force field simulations
  • 2019
  • Ingår i: Molecular Physics. - : Informa UK Limited. - 0026-8976 .- 1362-3028. ; 117:22, s. 3232-3240
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on the temperature dependence of the anomalous behaviour of water in terms of (i) its growth in tetrahedral structures, (ii) instantaneous spatial correlations from small angle x-ray scattering (SAXS) data, (iii) estimates of thermodynamic response functions of isothermal compressibility and (iv) thermal expansion coefficient. Water's thermal expansion coefficient is estimated for the first time at supercooled conditions from liquid water's structure factor. We used previously published data from classical force-fields of TIP4P/2005 and iAMOEBA to compare experimental data with molecular dynamics simulations and observe that these force-fields underestimate water's anomalous behaviour but perform better upon increasing pressure. We demonstrate that the molecular dynamics simulations can describe better the temperature dependent anomalous behaviour of ambient pressure water if simulated at 1 kbar. The deviation in anomalous fluctuations in the simulations is not restricted to approximate to 228 K but extends all the way to ambient temperatures.
  •  
29.
  • Perakis, Fivos, et al. (författare)
  • Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of liquid water feature a variety of time scales, ranging from extremely fast ballistic-like thermal motion, to slower molecular diffusion and hydrogen-bond rearrangements. Here, we utilize coherent X-ray pulses to investigate the sub-100 fs equilibrium dynamics of water from ambient conditions down to supercooled temperatures. This novel approach utilizes the inherent capability of X-ray speckle visibility spectroscopy to measure equilibrium intermolecular dynamics with lengthscale selectivity, by measuring oxygen motion in momentum space. The observed decay of the speckle contrast at the first diffraction peak, which reflects tetrahedral coordination, is attributed to motion on a molecular scale within the first 120 fs. Through comparison with molecular dynamics simulations, we conclude that the slowing down upon cooling from 328 K down to 253 K is not due to simple thermal ballistic-like motion, but that cage effects play an important role even on timescales over 25 fs due to hydrogen-bonding.
  •  
30.
  • Perakis, Fivos, et al. (författare)
  • Diffusive dynamics during the high-to-low density transition in amorphous ice
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:31, s. 8193-8198
  • Tidskriftsartikel (refereegranskat)abstract
    • Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high(HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
  •  
31.
  • Perakis, Fivos, et al. (författare)
  • Towards molecular movies with X-ray photon correlation spectroscopy
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:35, s. 19443-19453
  • Tidskriftsartikel (refereegranskat)abstract
    • In this perspective article we highlight research opportunities and challenges in probing structural dynamics of molecular systems using X-ray Photon Correlation Spectroscopy (XPCS). The development of new X-ray sources, such as 4th generation storage rings and X-ray free-electron lasers (XFELs), provides promising new insights into molecular motion. Employing XPCS at these sources allows to capture a very broad range of timescales and lengthscales, spanning from femtoseconds to minutes and atomic scales to the mesoscale. Here, we discuss the scientific questions that can be addressed with these novel tools for two prominent examples: the dynamics of proteins in biomolecular condensates and the dynamics of supercooled water. Finally, we provide practical tips for designing and estimating feasibility of XPCS experiments as well as on detecting and mitigating radiation damage.
  •  
32.
  • Reiser, Mario, et al. (författare)
  • Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy μs−1 in a time window up to 10 μs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.
  •  
33.
  • Schmidt-May, Alice F. (författare)
  • Final-State-Resolved Mutual Neutralization of Li+ and H-
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • We studied the mutual neutralization of Li+ and H- at effective collision energies of a few hundred meV, which corresponds to temperatures of around 2000 K, in the double ion storage ring DESIREE.We present a new approach to match beam velocities and a new general analysis method for non-fragmenting mutual neutralization at DESIREE.Our results show two features, which we could clearly assign to the product channel into the electronically   excited  3s state of neutral lithium and an unresolved combination of 3p and 3d final state contributions.Branching fractions into 3s are extracted for ten different collision energies via spectral binning and compared to several theoretical investigations and two previous measurements, which focused on the heavier isotope deuterium.We find a significant isotope effect, as theoretically predicted, but in contrast to previous experimental results. The branching fractions agree well with different theoretical approaches using non-empirical couplings and  best with a combination of ab initio potentials and Landau-Zener transition probabilities.
  •  
34.
  • Schreck, Simon, et al. (författare)
  • Atom-specific activation in CO oxidation
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 149:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.
  •  
35.
  • Schreck, Simon, et al. (författare)
  • Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy
  • 2022
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 129:27
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100  fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
  •  
36.
  • Späh, Alexander, et al. (författare)
  • Apparent power-law behavior of water's isothermal compressibility and correlation length upon supercooling
  • 2019
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 21:1, s. 26-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The isothermal compressibility and correlation length of supercooled water obtained from small-angle X-ray scattering (SAXS) were analyzed by fits based on an apparent power-law in the temperature range from 280 K down to the temperature of maximum compressibility at 229 K. Although the increase in thermodynamic response functions is not towards a critical point, it is still possible to obtain an apparent power law all the way to the maximum values with best-fit exponents of gamma = 0.40 +/- 0.01 for the isothermal compressibility and nu = 0.26 +/- 0.03 for the correlation length. The ratio between these exponents is close to a value of approximate to 0.5, as expected for a critical point, indicating the proximity of a potential second critical point. Comparison of gamma obtained from experiment with molecular dynamics simulations on the iAMOEBA water model shows that it would be located at pressures in the neighborhood of 1 kbar. The high value and sharpness of the compressibility maximum observed in the experiment are not reproduced by any of the existing classical water models, thus inviting further development of simulation models of water.
  •  
37.
  • Tsironi, Ifigeneia, et al. (författare)
  • Brine rejection and hydrate formation upon freezing of NaCl aqueous solutions
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:14, s. 7625-7632
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the freezing of saltwater on a molecular level is of fundamental importance for improving freeze desalination techniques. In this study, we investigate the freezing process of NaCl solutions using a combination of X-ray diffraction and molecular dynamics simulations (MD) for different salt-water concentrations, ranging from seawater conditions to saturation. A linear superposition model reproduces well the brine rejection due to hexagonal ice Ih formation and allows us to quantify the fraction of ice and brine. Furthermore, upon cooling at T = 233 K, we observe the formation of NaCl center dot 2H(2)O hydrates (hydrohalites), which coexist with ice Ih. MD simulations are utilized to model the formation of NaCl crystal hydrates. From the simulations, we estimate that the salinity of the newly produced ice is 0.5% mass percent (m/m) due to ion inclusions, which is within the salinity limits of fresh water. In addition, we show the effect of ions on the local ice structure using the tetrahedrality parameter and follow the crystallite formation using the ion coordination parameter and cluster analysis.
  •  
38.
  • Wang, Hsin-Yi, et al. (författare)
  • Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 22:5, s. 2677-2684
  • Tidskriftsartikel (refereegranskat)abstract
    • The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new “vibrationally hot precursor” state was identified in the polarization-dependent XA spectra.
  •  
39.
  • Yang, Cheolhee, et al. (författare)
  • Melting domain size and recrystallization dynamics of ice revealed by time-resolved x-ray scattering
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse which provided us with direct structural information on different length scales. From the wide-angle x-ray scattering (WAXS) patterns, the molten fraction, as well as the corresponding temperature at each delay, were determined. The small-angle x-ray scattering (SAXS) patterns, together with the information extracted from the WAXS analysis, provided the time-dependent change of the size and the number of liquid domains. The results show partial melting (~13%) and superheating of ice occurring at around 20 ns. After 100 ns, the average size of the liquid domains grows from about 2.5 nm to 4.5 nm by the coalescence of approximately six adjacent domains. Subsequently, we capture the recrystallization of the liquid domains, which occurs on microsecond timescales due to the cooling by heat dissipation and results to a decrease of the average liquid domain size.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39
Typ av publikation
tidskriftsartikel (32)
annan publikation (2)
licentiatavhandling (2)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Perakis, Fivos (35)
Nilsson, Anders (22)
Kim, Kyung Hwan (18)
Amann-Winkel, Katrin (17)
Pathak, Harshad (16)
Ladd-Parada, Marjori ... (10)
visa fler...
Sellberg, Jonas A. (9)
Ogasawara, Hirohito (7)
Yang, Cheolhee (7)
Lane, Thomas J. (7)
Lee, Jae Hyuk (7)
Bin, Maddalena (7)
Weston, Matthew (6)
Pettersson, Lars G.M ... (6)
Berkowicz, Sharon (6)
Filianina, Mariia, 1 ... (6)
Lehmkühler, Felix (6)
Katayama, Tetsuo (6)
Cavalca, Filippo (5)
Schlesinger, Daniel (5)
Reiser, Mario (5)
Sprung, Michael (5)
Das, Sudipta (4)
Späh, Alexander, 198 ... (4)
Eklund, Tobias (4)
You, Seonju (4)
Jeong, Sangmin (4)
Eom, Intae (4)
Kim, Minseok (4)
Li, Hailong (4)
Westermeier, Fabian (4)
Gutt, Christian (4)
Berkowicz, Sharon, 1 ... (4)
Beye, Martin (4)
LaRue, Jerry (4)
Wang, Hsin-Yi (3)
Park, Jaeku (3)
Chun, Sae Hwan (3)
Miedema, Piter S. (3)
Timmermann, Sonja (3)
Roseker, Wojciech (3)
Dell'Angela, Martina (3)
Amann-Winkel, Katrin ... (3)
Möller, Johannes (3)
Perakis, Fivos, 1984 ... (3)
Koroidov, Sergey (3)
Kim, Sangsoo (3)
Dallari, Francesco (3)
Grübel, Gerhard (3)
Diesen, Elias (3)
visa färre...
Lärosäte
Stockholms universitet (39)
Kungliga Tekniska Högskolan (15)
Uppsala universitet (1)
Lunds universitet (1)
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (39)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy