SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perek A.) "

Sökning: WFRF:(Perek A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Labit, B., et al. (författare)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
2.
  • Coda, S., et al. (författare)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
3.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
4.
  • Hoppe, Mathias, 1993, et al. (författare)
  • Runaway electron synchrotron radiation in a vertically translated plasma
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 60:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchrotron radiation observed from runaway electrons (REs) in tokamaks depends upon the position and size of the RE beam, the RE energy and pitch distributions, as well as the location of the observer. We show experimental synchrotron images of a vertically moving RE beam sweeping past the detector in the Tokamak a Configuration Variable (TCV) tokamak and compare it with predictions from the synthetic synchrotron diagnosticSoft. This experimental validation lends confidence to the theory underlying the synthetic diagnostics which are used for benchmarking theoretical models of and probing runaway dynamics. We present a comparison of synchrotron measurements in TCV with predictions of kinetic theory for runaway dynamics in uniform magnetic fields. We find that to explain the detected synchrotron emission, significant non-collisional pitch angle scattering as well as radial transport of REs would be needed. Such effects could be caused by the presence of magnetic perturbations, which should be further investigated in future TCV experiments.
  •  
5.
  • Wijkamp, T. A., et al. (författare)
  • Resonant interaction between runaway electrons and the toroidal magnetic field ripple in TCV
  • 2024
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 64:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This work explains the anomalously high runaway electron (RE) pitch angles inferred in the flat-top of dedicated Tokamak a Configuration Variable (TCV) experiments. Kinetic modelling shows that the resonant interaction between the gyromotion of the electrons and the toroidal magnetic field ripple will give rise to strong pitch angle scattering in TCV. The resulting increase in synchrotron radiation power losses acts as a RE energy barrier. These observations are tested experimentally by a magnetic field ramp-down, which gradually reduces the resonant parallel momentum at which the REs interact with the ripple. Resulting changes in synchrotron emission geometry and intensity are observed using three multi-spectral camera imaging systems, viewing the RE beam at distinct spatial angles in multiple wavelength ranges. Experimental reconstructions of the RE distribution in momentum- and real-space are consistent with kinetic model predictions.
  •  
6.
  • Wijkamp, T. A., et al. (författare)
  • Tomographic reconstruction of the runaway distribution function in TCV using multispectral synchrotron images
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchrotron radiation observed in a quiescent Tokamak Configuration Variable (TCV) runaway discharge is studied using filtered camera images targeting three distinct wavelength intervals. Through the tomographic simultaneous algebraic reconstruction technique (SART) procedure the high momentum, high pitch angle part of the spatial and momentum distribution of these relativistic particles is reconstructed. Experimental estimates of the distribution are important for verification and refinement of formation-, decay- and transport-models underlying runaway avoidance and mitigation strategy design. Using a test distribution it is demonstrated that the inversion procedure provides estimates accurate to within a few tens of percent in the region of phase-space contributing most to the synchrotron image. We find that combining images filtered around different parts of the emission spectrum widens the probed part of momentum-space and reduces reconstruction errors. Next, the SART algorithm is used to obtain information on the spatiotemporal runaway momentum distribution in a selected TCV discharge. The momentum distribution is found to relax towards an avalanche-like exponentially decaying profile. Anomalously high pitch angles and a radial profile increasing towards the edge are found for the most strongly emitting particles in the distribution.Pitch angle scattering by toroidal magnetic field ripple is consistent with this picture. An alternative explanation is the presence of high frequency instabilities in combination with the formation of a runaway shell at the edge of the plasma.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy