SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peterson Ellena M) "

Sökning: WFRF:(Peterson Ellena M)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chu, Hencelyn, et al. (författare)
  • Candidate vaginal microbicides with activity against Chlamydia trachomatis and Neisseria gonorrhoeae
  • 2010
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 0924-8579 .- 1872-7913. ; 36:2, s. 145-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Vaginal microbicides with activity towards organisms that cause sexually transmitted infections have been proposed as a strategy to reduce transmission. Small-molecule inhibitors of Chlamydia trachomatis serovar D belonging to the class of salicylidene acylhydrazides (INPs) have been shown to work through a mechanism that involves iron restriction. Expanding on this work, ten INPs were tested against a lymphogranuloma venereum strain of C. trachomatis (serovar L2), Neisseria gonorrhoeae, and hydrogen peroxide-producing Lactobacillus crispatus and Lactobacillus jensenii. Seven INPs had minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of <50 microM towards C. trachomatis L2. Three INPs had a MIC <12.5 microM against N. gonorrhoeae. Inhibition was reversed by iron, holo-transferrin and holo-lactoferrin but not by the iron-poor forms of these compounds. The compounds exhibited no bactericidal activity toward Lactobacillus. The INPs were not cytotoxic to HeLa 229 cells. When INP 0341 was tested in a mouse model of a Chlamydia vaginal infection there was a significant reduction in the number of mice shedding C. trachomatis up to 4 days after infection (P<0.01). In summary, select INPs are promising vaginal microbicide candidates as they inhibit the growth of two common sexually transmitted organisms in vitro, are active in a mouse model against C. trachomatis, are not cytotoxic and do not inhibit organisms that compose the normal vaginal flora.
  •  
2.
  • Slepenkin, Anatoly, et al. (författare)
  • Reversal of the Antichlamydial Activity of Putative Type III Secretion Inhibitors by Iron
  • 2007
  • Ingår i: Infection and Immunity. ; 75:7, s. 3478-89
  • Tidskriftsartikel (refereegranskat)abstract
    • INPs, which are chemically synthesized compounds belonging to a class of acylated hydrazones of salicylaldehydes, can inhibit the growth of Chlamydiaceae. Evidence has been presented that in Yersinia and Chlamydia INPs may affect the type III secretion (T3S) system. In the present study 25 INPs were screened for antichlamydial activity at a concentration of 50 µM, and 14 were able to completely inhibit the growth of Chlamydia trachomatis serovar D in McCoy and HeLa 229 cells. The antichlamydial activities of two of these INPs, INPs 0341 and 0400, were further characterized due to their low cytotoxicity. These compounds were found to inhibit C. trachomatis in a dose-dependent manner; were not toxic to elementary bodies; were cidal at a concentration of 20 µM; inhibited all Chlamydiaceae tested; and could inhibit the development of C. trachomatis as determined by the yield of progeny when they were added up to 24 h postinfection. INP 0341 was able to affect the expression of several T3S genes. Compared to the expression in control cultures, lcrH-1, copB, and incA, all middle- to late-expressed T3S genes, were not expressed in the INP 0341-treated cultures 24 to 36 h postinfection. Iron, supplied as ferrous sulfate, as ferric chloride, or as holo-transferrin, was able to negate the antichlamydial properties of the INPs. In contrast, apo-transferrin and other divalent metal ions tested were not able to reverse the inhibitory effect of the INPs. In conclusion, the potent antichlamydial activity of INPs is directly or indirectly linked with iron, and this inhibition of Chlamydia has an effect on the T3S system of this intracellular pathogen.
  •  
3.
  • Pedersen, Christian, et al. (författare)
  • Formulation of the Microbicide INP0341 for In Vivo Protection against a Vaginal Challenge by Chlamydia trachomatis
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:10, s. e110918-
  • Tidskriftsartikel (refereegranskat)abstract
    • The salicylidene acylhydrazide (SA) compounds have exhibited promising microbicidal properties. Previous reports have shown the SA compounds, using cell cultures, to exhibit activity against Chlamydia trachomatis, herpes simplex virus and HIV-1. In addition, using an animal model of a vaginal infection the SA compound INP0341, when dissolved in a liquid, was able to significantly protect mice from a vaginal infection with C. trachomatis. To expand upon this finding, in this report INP0341 was formulated as a vaginal gel, suitable for use in humans. Gelling agents (polymers) with inherent antimicrobial properties were chosen to maximize the total antimicrobial effect of the gel. In vitro formulation work generated a gel with suitable rheology and sustained drug release. A formulation containing 1 mM INP0341, 1.6 wt% Cremophor ELP (solubility enhancer) and 1.5 wt% poly(acrylic acid) (gelling and antimicrobial agent), was chosen for studies of efficacy and toxicity using a mouse model of a vaginal infection. The gel formulation was able to attenuate a vaginal challenge with C. trachomatis, serovar D. Formulations with and without INP0341 afforded protection, but the inclusion of INP0341 increased the protection. Mouse vaginal tissue treated with the formulation showed no indication of gel toxicity. The lack of toxicity was confirmed by in vitro assays using EpiVaginal tissues, which showed that a 24 h exposure to the gel formulation did not decrease the cell viability or the barrier function of the tissue. Therefore, the gel formulation described here appears to be a promising vaginal microbicide to prevent a C. trachomatis infection with the potential to be expanded to other sexually transmitted diseases.
  •  
4.
  • Slepenkin, Anatoly, et al. (författare)
  • Protection of mice from a chlamydia trachomatis vaginal infection using a salicylidene acylhydrazide, a potential Mmcrobicide
  • 2011
  • Ingår i: Journal of Infectious Diseases. - Chicago : University of Chicago Press. - 0022-1899 .- 1537-6613. ; 204:9, s. 1314-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • The salicylidene acylhydrazide INP0341 inhibits growth of Chlamydia in HeLa cells, has negligible cell toxicity, and does not inhibit the growth of lactobacilli. The antichlamydial activity of INP0341 was retained when tested in vaginal and semen simulants. Vaginal tissue from INP0341-treated mice appeared similar to control sham-treated mice. To determine whether INP0341 can protect mice from a vaginal challenge, C3H/HeJ mice were either sham or INP0341 treated intravaginally pre- and postinoculation with 5 × 10(2) inclusion-forming units (IFUs) of Chlamydia trachomatis serovar D. Vaginal cultures taken over a month-long period showed a significant difference in the number of control mice that were culture positive versus the number in the INP0341-treated group, 100% (25/25) and 31% (8/26), respectively (P < .05). The quantity of IFUs shed and antibody titers to Chlamydia were significantly higher for the control group (P < .05). In summary, INP0341 is a promising compound to be considered for formulation as a vaginal microbicide.
  •  
5.
  • Ur-Rehman, Tofeeq, et al. (författare)
  • Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion
  • 2012
  • Ingår i: The Journal of antibiotics. - : Springer Science and Business Media LLC. - 0021-8820 .- 1881-1469. ; 65, s. 397-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Salicylidene acylhydrazides belong to a class of compounds shown to inhibit bacterial type III secretion (T3S) in pathogenic Gram-negative bacteria. This class of compounds also inhibits growth and replication of Chlamydiae, strict intracellular bacteria that possess a T3S system. In this study a library of 58 salicylidene acylhydrazides was screened to identify inhibitors of Chlamydia growth. Compounds inhibiting growth of both Chlamydia trachomatis and Chlamydophila pneumoniae were tested for cell toxicity and seven compounds were selected for preliminary pharmacokinetic analysis in mice using cassette dosing. Two compounds, ME0177 and ME0192, were further investigated by individual pharmacokinetic analysis. Compound ME0177 had a relatively high peak plasma concentration (C(max)) and area under curve and therefore may be considered for systemic treatment of Chlamydia infections. The other compound, ME0192, had poor pharmacokinetic properties but the highest anti-chlamydial activity in vitro and therefore was tested for topical treatment in a mouse vaginal infection model. ME0192 administered vaginally significantly reduced the infectious burden of C. trachomatis and the number of infected mice.Journal of Antibiotics advance online publication, 6 June 2012; doi:10.1038/ja.2012.43.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy