SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petersson Göran) "

Sökning: WFRF:(Petersson Göran)

  • Resultat 1-50 av 725
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Aho-Mantila, L., et al. (författare)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
3.
  •  
4.
  •  
5.
  • Andersson Sundén, Erik, et al. (författare)
  • An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 147-152
  • Tidskriftsartikel (refereegranskat)abstract
    • The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.
  •  
6.
  • Angioni, C., et al. (författare)
  • Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality
  • 2018
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674 .- 1070-6631 .- 1089-7666. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.
  •  
7.
  • Angioni, C., et al. (författare)
  • Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
  •  
8.
  • Angioni, C., et al. (författare)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
9.
  • Appel, L. C., et al. (författare)
  • Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model
  • 2018
  • Ingår i: Computer Physics Communications. - : ELSEVIER. - 0010-4655 .- 1879-2944. ; 223, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.
  •  
10.
  • Arnichand, H., et al. (författare)
  • Discriminating the trapped electron modes contribution in density fluctuation spectra
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.
  •  
11.
  • Aslanyan, V, et al. (författare)
  • Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.
  •  
12.
  • Baiocchi, B., et al. (författare)
  • Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.
  •  
13.
  • Baiocchi, B., et al. (författare)
  • Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.
  •  
14.
  • Baron-Wiechec, A., et al. (författare)
  • Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 133, s. 135-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.
  •  
15.
  • Basiuk, V., et al. (författare)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
16.
  • Batistoni, P., et al. (författare)
  • Overview of neutron measurements in jet fusion device
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 102-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.
  •  
17.
  • Batistoni, P., et al. (författare)
  • Technical preparations for the in-vessel 14 MeV neutron calibration at JET
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 117, s. 107-114
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy.
  •  
18.
  • Beal, J., et al. (författare)
  • Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall
  • 2016
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.
  •  
19.
  • Bergsåker, Henric, et al. (författare)
  • Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.
  •  
20.
  • Bernardo, J., et al. (författare)
  • Ion temperature and toroidal rotation in JET's low torque plasmas
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
  •  
21.
  • Bernert, M., et al. (författare)
  • Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation. Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point. Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.
  •  
22.
  •  
23.
  • Bisoffi, Andrea, et al. (författare)
  • Hybrid cancellation of ripple disturbances arising in AC/DC converters
  • 2017
  • Ingår i: Automatica. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0005-1098 .- 1873-2836. ; 77, s. 344-352
  • Tidskriftsartikel (refereegranskat)abstract
    • In AC/DC converters, a peculiar periodic nonsmooth waveform arises, the so-called ripple. In this paper we propose a novel model that captures this nonsmoothness by means of a hybrid dynamical system performing state jumps at certain switching instants, and we illustrate its properties with reference to a three phase diode bridge rectifier. As the ripple corrupts an underlying desirable signal, we propound two observer schemes ensuring asymptotic estimation of the ripple, the first with and the second without knowledge of the switching instants. Our theoretical developments are well placed in the context of recent techniques for hybrid regulation and constitute a contribution especially for our second observer, where the switching instants are estimated. Once asymptotic estimation of the ripple is achieved, the ripple can be conveniently canceled from the desirable signal, and thanks to the inherent robustness properties of the proposed hybrid formulation, the two observer schemes require only that the desirable signal is slowly time varying compared to the ripple. Exploiting this fact, we illustrate the effectiveness of our second hybrid observation law on experimental data collected from the Joint European Torus tokamak.
  •  
24.
  • Bobkov, V, et al. (författare)
  • Impact of ICRF on the scrape-off layer and on plasma wall interactions : From present experiments to fusion reactor
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 131-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 < P-cen / P-total < 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.
  •  
25.
  • Bobkov, V., et al. (författare)
  • Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 12, s. 1194-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.
  •  
26.
  • Bolshakova, I., et al. (författare)
  • Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper deals with radiation resistant sensors and their associated measuring instrumentation developed in the course of R and D activities carried out in the framework of an international collaboration. The first trial tests of three-dimensional (3D) probes with Hall sensors have been performed in European tokamaks TORE SUPRA (2004) and JET (2005). Later in 2009 six sets of 3D probes were installed in JET and now continue to operate. The statistical analysis performed in 2014 on the basis of the JET database have demonstrated stable long term operation of all 18 sensors of 3D probes. The results of measurements conducted at the neutron fluxes of nuclear reactors have demonstrated the operability of the sensors up to high neutron fluences of F > 10(18)n , cm(-2) that exceeds the maximum one for the locations of steady state sensors in ITER over its total lifetime.
  •  
27.
  • Boltruczyk, G., et al. (författare)
  • Development of MPPC-based detectors for high count rate DT campaigns at JET
  • 2017
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 123, s. 940-944
  • Tidskriftsartikel (refereegranskat)abstract
    • The products of fusion reactions at JET are measured using different diagnostic techniques. One of the methods is based on measurements of gamma-rays, originating from reactions between fast ions and plasma impurities. During the forthcoming deuterium-tritium (DT) campaign a particular attention will be paid to 4.44 MeV gamma-rays emitted in the Be-9(alpha,n gamma)C-12 reaction. Gamma-ray detectors foreseen for measurements in DT campaigns have to be able to register spectra at high count rates, up to approximately 500 kHz. For the Gamma-ray Camera at JET a new setup will be based on scintillators with a short decay time, e.g., CeBr3, and a multi-pixel photon counter (MPPC). We present two methods of output signal shortening in modules based on MPPC. A short detector output signal is necessary in order to minimize the number of pile up events at high count rates. One method uses a passive RC circuit with a pole zero cancellation, whereas an active transimpedance amplifier is used in the other one. Due to the strong dependence of MPPC properties on temperature variation, a special device MTCD@NCBJ was designed and produced to stabilize the gain in MPPC-based scintillation detectors. We show that this device guarantees stable working conditions.
  •  
28.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
29.
  •  
30.
  • Bonanomi, N., et al. (författare)
  • Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role, for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport models accounting for multi-scale effects are assessed against JET experimental results.
  •  
31.
  •  
32.
  • Bonanomi, N., et al. (författare)
  • Role of fast ion pressure in the isotope effect in JET L-mode plasmas
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.
  •  
33.
  • Bonanomi, N., et al. (författare)
  • Trapped electron mode driven electron heat transport in JET : experimental investigation and gyro-kinetic theory validation
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and T-e modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of vertical bar del T-e vertical bar/T-e with respect to pure ICRH, TEM dominant discharges has been experimentally observed, in spite of increased total electron power. Possible explanations are discussed.
  •  
34.
  • Bonelli, F., et al. (författare)
  • Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.
  •  
35.
  • Borodin, D., et al. (författare)
  • Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW
  • 2016
  • Ingår i: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 9, s. 604-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our 'ERO-min' fit for the physical sputtering yields for the plasma-wetted areas based on simulated data.
  •  
36.
  • Borodin, D., et al. (författare)
  • Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience
  • 2019
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 510-515
  • Tidskriftsartikel (refereegranskat)abstract
    • ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the "ERO-min" fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations.
  •  
37.
  • Borodkina, I., et al. (författare)
  • An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 341-345
  • Tidskriftsartikel (refereegranskat)abstract
    • For simulation of plasma-facing component erosion in fusion experiments, an analytical expression for the ion velocity just before the surface impact including the local electric field and an optional surface biasing effect is suggested. Energy and angular impact distributions and the resulting effective sputtering yields were produced for several experimental scenarios at JET ILW mostly involving PFCs exposed to an oblique magnetic field. The analytic solution has been applied as an improvement to earlier ERO modelling of localized, Be outer limiter, RF-enhanced erosion, modulated by toggling of a remote, however magnetically connected ICRH antenna. The effective W sputtering yields due to D and Be ion impact in Type-I and Type-III ELMs and inter-ELM conditions were also estimated using the analytical approach and benchmarked by spectroscopy. The intra-ELM W sputtering flux increases almost 10 times in comparison to the inter-ELM flux.
  •  
38.
  • Borodkina, I., et al. (författare)
  • An Analytical Expression for the Electric Field and Particle Tracing in Modelling of Be Erosion Experiments at the JET ITER-like Wall
  • 2016
  • Ingår i: Contributions to Plasma Physics. - : WILEY-V C H VERLAG GMBH. - 0863-1042 .- 1521-3986. ; 56:6-8, s. 640-645
  • Tidskriftsartikel (refereegranskat)abstract
    • A new analytical approximation for the electric potential profile in the presence of an oblique magnetic field and the analytical solution for the particle motion just before the impact with a plasma-facing surface are presented. These approximations are in good agreement with fluid solutions and the corresponding PIC simulations. These expressions were applied to provide effective physical erosion yields for Be, which have in a second step been used in ERO code simulations of spectroscopy at Be limiters of the JET ITER-like wall. These new analytical expressions lead to an increase of the effective physical sputtering yields of Be by deuteron impact up to 30% in comparison with earlier pure numerical simulations. (
  •  
39.
  • Bourdelle, C., et al. (författare)
  • Core turbulent transport in tokamak plasmas : bridging theory and experiment with QuaLiKiz
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 58:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.
  •  
40.
  • Bourdelle, C., et al. (författare)
  • L to H mode transition : parametric dependencies of the temperature threshold
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T-th). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T-th are tested versus magnetic field, density, effective charge. Various robust experimental observations are reproduced, in particular T-th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.
  •  
41.
  • Bourdelle, C., et al. (författare)
  • WEST Physics Basis
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:6
  • Tidskriftsartikel (refereegranskat)abstract
    • With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.
  •  
42.
  • Boyer, Helen, et al. (författare)
  • JET Tokamak, preparation of a safety case for tritium operations
  • 2016
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 109, s. 1308-1312
  • Tidskriftsartikel (refereegranskat)abstract
    • A new Safety Case is required to permit tritium operations on JET during the forthcoming DTE2 campaign. The outputs, benefits and lessons learned associated with the production of this Safety Case are presented. The changes that have occurred to the Safety Case methodology since the last JET tritium Safety Case are reviewed. Consideration is given to the effects of modifications, particularly ITER related changes, made to the JET and the impact these have on the hazard assessments as well as normal operations. Several specialized assessments, including recent MELCOR modelling, have been undertaken to support the production of this Safety Case and the impact of these assessments is outlined. Discussion of the preliminary actions being taken to progress implementation of this Safety Case is provided, highlighting new methods to improve the dissemination of the key Safety Case results to the plant operators. Finally, the work required to complete this Safety Case, before the next tritium campaign, is summarized. (C) 2016 EURATOM. Published by Elsevier B.V. All rights reserved.
  •  
43.
  • Bravenec, R., et al. (författare)
  • Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and E x B stabilization in JET high-performance discharges
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 58:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonlinear gyrokinetic simulations using the GENE code have previously predicted a significant nonlinear enhanced electromagnetic stabilization in certain JET discharges with high neutral-beam power and low core magnetic shear (Citrin et al 2013 Phys. Rev. Lett. 111 155001, 2015 Plasma Phys. Control. Fusion 57 014032). This dominates over the impact of E x B flow shear in these discharges. Furthermore, fast ions were shown to be a major contributor to the electromagnetic stabilization. These conclusions were based on results from the GENE gyrokinetic turbulence code. In this work we verify these results using the GYRO code. Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree for more than one discharge. Otherwise, agreement may simply be fortuitous. Therefore, we analyze three discharges, all with a carbon wall: a simplified, two-species, circular geometry case based on an actual JET discharge; an L-mode discharge with a significant fast-ion pressure fraction; and a low-triangularity high-beta hybrid discharge. All discharges were analyzed at normalized toroidal flux coordinate rho = 0.33 where significant ion temperature peaking is observed. The GYRO simulations support the conclusion that electromagnetic stabilization is strong, and dominates E x B shear stabilization.
  •  
44.
  • Breton, S., et al. (författare)
  • First principle integrated modeling of multi-channel transport including Tungsten in JET
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.
  •  
45.
  • Breton, S., et al. (författare)
  • High Z neoclassical transport : Application and limitation of analytical formulae for modelling JET experimental parameters
  • 2018
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schluter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.
  •  
46.
  • Brezinsek, S., et al. (författare)
  • Beryllium migration in JET ITER-like wall plasmas
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:6
  • Tidskriftsartikel (refereegranskat)abstract
    • JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (E-in = 35 eV) and more than 100%, caused by Be self-sputtering (E-in = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at E-in = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of magnitude. Within the divertor, Be performs far fewer re-erosion and transport steps than C due to an energetic threshold for Be sputtering, and inhibits as a result of this the transport to the divertor floor and the pump duct entrance. The target plates in the JET-ILW inner divertor represent at the strike line a permanent net erosion zone, in contrast to the net deposition zone in JET-C with thick carbon deposits on the CFC (carbon-fibre composite) plates. The Be migration identified is consistent with the observed low long-term fuel retention and dust production with the JET-ILW.
  •  
47.
  • Brezinsek, S., et al. (författare)
  • Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs
  • 2016
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments in the JET tokamak equipped with the ITER-like wall (ILW) revealed that the inner and outer target plate at the location of the strike points represent after one year of operation intact tungsten (W) surfaces without any beryllium (Be) surface coverage. The dynamics of near-surface retention, implantation, desorption and recycling of deuterium (D) in the divertor of plasma discharges are determined by W target plates. As the W plasma-facing components (PFCs) are not actively cooled, the surface temperature (T-surface) is increasing with plasma exposure, varying the balance between these processes in addition to the impinging deuteron fluxes and energies. The dynamic behaviour on a slow time scale of seconds was quantified in a series of identical L-mode discharges (JET Pulse Number (JPN)#81938-73) by intra-shot gas analysis providing the reduction of deuterium retention in W PFCs by 1/3 at a base temperature (T-base) range at the outer target plate between 65 degrees C and 150 degrees C equivalent to a T-surface span of 150 degrees C and 420 degrees C. The associated recycling and molecular D desorption during the discharge varies only at lowest temperatures moderately, whereas desorption between discharges rises significantly with increasing T-base. The retention measurements represent the sum of inner and outer divertor interaction at comparable T-surface. The dynamic behaviour on a fast time scale of ms was studied in a series of identical H-mode discharges (JPN #83623-83974) and coherent edge-localized mode (ELM) averaging. High energetic ELMs of about 3 keV are impacting on the W PFCs with fluxes of 3 x 10(23) D+ s(-1) m(-2) which is about four times higher than inter-ELM ion fluxes with an impact energy of about E-im = 200 eV. This intra-ELM ion flux is associated with a high heat flux of about 60 MW m(-2) to the outer target plate which causes T-surface rise by Delta T = 100 K per ELM covering finally the range between 160 degrees C and 1400 degrees C during the flat-top phase. ELM-induced desorption from saturated near-surface implantation regions as well as deep ELM-induced deuterium implantation areas under varying baseline temperature takes place. Subsequent refuelling by intra-ELM deuteron fluxes occurs and a complex interplay between deuterium fuelling and desorption can be observed in the temporal ELM footprint of the surface temperature (IR thermography), the impinging deuteron flux (Langmuir probes), and the Balmer radiation (emission spectroscopy) as representative for the deuterium recycling flux. In contrast to JET-C, a pronounced second peak, similar or equal to 8 ms delayed with respect to the initial ELM crash, in the D-alpha radiation and the ion flux has been observed. The peak can be related to desorption of implanted energetic intra-ELM D+ diffusing to the W surface, and performing local recycling.
  •  
48.
  • Budny, R. V., et al. (författare)
  • Alpha heating, isotopic mass, and fast ion effects in deuterium-tritium experiments
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 58:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha heating experiments in the Tokamak Fusion Test Reactor (TFTR) and in the Joint European Torus (JET) 1997 DTE1 campaign arc reexamined. In TFTR supershots central electron heating of both deuterium only and deuterium-tritium supershots was dominated by thermal ion-electron heat transfer rate p(ie). The higher T-e in deuterium-tritium supershots was mainly due to higher T-i largely caused by isotopic mass effects of neutral beam-thermal ion heating. The thermal ion-electron heating dominated the electron heating in the center. The ratio of the predicted alpha to total electron heating rates f(alp) is less than 0.30. Thus alpha heating (and possible favorable isotopic mass scaling of the thermal plasma) were too small to be measured reliably. The JET alpha heating Hot-Ion H-mode discharges had lower T-i/T-e, and thus had lower p(ie) and the deuterium-tritium DT discharges had higher f(alp), than in TFTR. There were not enough comparable discharges to verify alpha heating. The high performance phases consisted of rampup to brief flattop durations. At equal times during the rampup phase central T-e and T-i were linearly correlated with the thermal hydrogcnic isotopic mass < A >(hyd) which co-varied with beam ion pressure, the tritium fraction of neutral beam power, and the time delay to the first significant sawteeth which interrupted the T-e increases. For both devices the expected alpha healing rate and the null hypothesis of no alpha heating arc consistent with the measurements within the measurement and modeling uncertainties.
  •  
49.
  • Budny, R. V., et al. (författare)
  • Core fusion power gain and alpha heating in JET, TFTR, and ITER
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 56:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Profiles of the ratio of fusion power and the auxiliary heating power (MT are calculated for the TFTR and JET discharges with the highest neutron emission rates, and arc predicted for ITER. Core values above 1.3 for JET and 0.8 for TFTR are obtained, Values above 20 are predicted for ITER baseline plasmas.
  •  
50.
  • Buratti, P., et al. (författare)
  • Diagnostic application of magnetic islands rotation in JET
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 56:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the propagation frequency of magnetic islands in JET are compared with diamagnetic drift frequencies, in view of a possible diagnostic application to the determination of markers for the safety factor profile. Statistical analysis is performed for a database including many well-diagnosed plasma discharges. Propagation in the plasma frame, i.e. with subtracted E x B Doppler shift, results to be in the ion diamagnetic drift direction, with values ranging from 0.8 (for islands at the q = 2 resonant surface) to 1.8 (for more internal islands) times the ion diamagnetic drift frequency. The diagnostic potential of the assumption of island propagation at exactly the ion diamagnetic frequency is scrutinised. Rational-q locations obtained on the basis of this assumption are compared with the ones measured by equilibrium reconstruction including motional Stark effect measurements as constraints. Systematic shifts and standard deviations are determined for islands with (poloidal, toroidal) periodicity indexes of (2, 1), (3, 2), (4, 3) and (5, 3) and possible diagnostic applications are indicated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 725
Typ av publikation
tidskriftsartikel (582)
konferensbidrag (39)
rapport (33)
bokkapitel (24)
doktorsavhandling (17)
bok (11)
visa fler...
forskningsöversikt (9)
annan publikation (3)
licentiatavhandling (3)
proceedings (redaktörskap) (2)
samlingsverk (redaktörskap) (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (578)
övrigt vetenskapligt/konstnärligt (136)
populärvet., debatt m.m. (11)
Författare/redaktör
Petersson, Per (312)
Conroy, Sean (311)
Rubel, Marek (310)
Zychor, I (309)
Andersson Sundén, Er ... (308)
Ericsson, Göran (308)
visa fler...
Hjalmarsson, Anders (306)
Cecconello, Marco (304)
Eriksson, Jacob, Dr, ... (304)
Possnert, Göran, 195 ... (304)
Bykov, Igor (302)
Weiszflog, Matthias (302)
Sjöstrand, Henrik, 1 ... (301)
Frassinetti, Lorenzo (291)
Ström, Petter (291)
Weckmann, Armin (291)
Hellsten, Torbjörn (289)
Menmuir, Sheena (280)
Bergsåker, Henric (273)
Hellesen, Carl, 1980 ... (264)
Binda, Federico, 198 ... (260)
Skiba, Mateusz, 1985 ... (260)
Rachlew, Elisabeth, ... (258)
Dzysiuk, Nataliia (228)
Johnson, Thomas (194)
Tholerus, Emmi (185)
Petersson, Göran (163)
Garcia-Carrasco, Alv ... (149)
Stefanikova, Estera (148)
Garcia Carrasco, Alv ... (143)
Elevant, Thomas (141)
Ivanova, Darya (141)
Ratynskaia, Svetlana (126)
Olivares, Pablo Vall ... (125)
Tolias, Panagiotis (122)
Asp, E (114)
Tholerus, Simon, 198 ... (97)
Zhou, Yushun (92)
Petersson, Göran, 19 ... (82)
Jonsson, Thomas, 197 ... (81)
Zhou, Yushan (61)
Dzysiuk, N. (58)
Likonen, J (45)
Binda, F. (43)
Skiba, M. (43)
Hellesen, C (41)
Heinola, K (36)
Coad, J. P. (35)
Koivuranta, S (33)
Rachlew, Elisabeth (33)
visa färre...
Lärosäte
Uppsala universitet (358)
Kungliga Tekniska Högskolan (342)
Linnéuniversitetet (165)
Chalmers tekniska högskola (130)
Lunds universitet (33)
Linköpings universitet (27)
visa fler...
Mittuniversitetet (21)
Sveriges Lantbruksuniversitet (18)
Umeå universitet (14)
Göteborgs universitet (11)
Karolinska Institutet (8)
Malmö universitet (7)
Högskolan Kristianstad (4)
Havs- och vattenmyndigheten (4)
Örebro universitet (3)
Jönköping University (2)
Stockholms universitet (1)
RISE (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (634)
Svenska (91)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (456)
Medicin och hälsovetenskap (137)
Teknik (72)
Samhällsvetenskap (25)
Lantbruksvetenskap (24)
Humaniora (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy