SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petitpas G.) "

Sökning: WFRF:(Petitpas G.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Schulze, S., et al. (författare)
  • GRB 120422A/SN 2012bz : Bridging the gap between low- and high-luminosity gamma-ray bursts
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (L-iso less than or similar to 10(48.5) erg s(-1)) than the average of more distant ones (L-iso greater than or similar to 10(49.5) erg s(-1)). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a gamma-ray luminosity of L-iso similar to 10(49.6-49.9) erg s(-1) that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low-and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium-and low-resolution spectrographs with 6-10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of similar to 270 days. Furthermore, we used a tuneable filter that is centred at H alpha to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Gamma(0) similar to 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of less than or similar to 2 x 10(30) erg s(-1) Hz(-1) in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of k(B)T similar to 16 eV and a radius of similar to 7 x 10(13) cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of M-V = -19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M-circle dot, ejecta mass of 5.87 M-circle dot, and kinetic energy of 4.10x10(52) erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy's nucleus. Conclusions. While the prompt gamma-ray emission points to a high-L GRB, the weak afterglow and the low Gamma(0) were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate L-iso of similar to 10(49.6-49.9) erg s(-1). Therefore, we conclude that GRB 120422A was a transition object between low-and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
  •  
3.
  • Espada, D., et al. (författare)
  • Disentangling the Circumnuclear Environs of Centaurus A. II. On the Nature of the Broad Absorption Line
  • 2010
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 720:1, s. 666-678
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0farcs3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line (~55 km s–1). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance ~20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO+(1-0), except the broad absorption line that is detected in HCO+(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r lsim 10 pc, which might contribute to the depth of the broad H I and molecular lines.
  •  
4.
  • Canameras, R., et al. (författare)
  • Planck's dusty GEMS V. Molecular wind and clump stability in a strongly lensed star-forming galaxy at z=2.2
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 10(9) M-circle dot, in the strongly gravitationally lensed submillimeter galaxy "the Emerald" (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5 '' and 21 '' formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4-3) line and 850 mu m dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 x 10(10) M-circle dot, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4-3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of -200 km s(-1) is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.
  •  
5.
  • Konig, Sabine, et al. (författare)
  • Molecular tendrils feeding star formation in the Eye of the Medusa -- The Medusa merger in high resolution 12CO 2–1 maps
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. Art. no. A6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying molecular gas properties in merging galaxies gives us important clues to the onset and evolution of interaction-triggered starbursts. NGC 4194 (the Medusa merger) is particularly interesting to study, since its FIR-to-CO luminosity ratio rivals that of ultraluminous galaxies (ULIRGs), despite its lower luminosity compared to ULIRGs, which indicates a high star formation efficiency (SFE) that is relative to even most spirals and ULIRGs. We study the molecular medium at an angular resolution of 0.65′′ × 0.52′′ (~120 × 98 pc) through our observations of 12CO 2−1 emission using the Submillimeter Array (SMA). We compare our 12CO 2−1 maps with the optical Hubble Space Telescope and high angular resolution radio continuum images to study the relationship between molecular gas and the other components of the starburst region. The molecular gas is tracing the complicated dust lane structure of NGC 4194 with the brightest emission being located in an off-nuclear ring-like structure with ~320 pc radius, the Eye of the Medusa. The bulk CO emission of the ring is found south of the kinematical center of NGC 4194. The northern tip of the ring is associated with the galaxy nucleus, where the radio continuum has its peak. Large velocity widths associated with the radio nucleus support the notion of NGC 4194 hosting an active galactic nucleus. A prominent, secondary emission maximum in the radio continuum is located inside the molecular ring. This suggests that the morphology of the ring is partially influenced by massive supernova explosions. From the combined evidence, we propose that the Eye of the Medusa contains a shell of swept up material where we identify a number of giant molecular associations. We propose that the Eye may be the site of an efficient starburst of 5−7 M⊙ yr-1, but it would still constitute only a fraction of the 30−50 M⊙ yr-1 star formation rate of the Medusa. Furthermore, we find that ~50% of the molecular mass of NGC 4194 is found in extended filamentary-like structures tracing the minor and major axis dust lanes. We suggest that molecular gas is transported along these lanes, providing the central starburst region with fuel. Interestingly, a comparison with locations of super star clusters (SSCs) reveal that the molecular gas and the SSCs are not co-spatial.
  •  
6.
  • Martin, S., et al. (författare)
  • The Submillimeter Array 1.3 mm line survey of Arp 220
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Though Arp 220 is the closest and by far the most studied ULIRG, a discussion is still ongoing on the main power source driving its huge infrared luminosity. Aims. To study the molecular composition of Arp 220 in order to find chemical fingerprints associated with the main heating mechanisms within its nuclear region. Methods. We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. Results. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The C-13 isotopic substitutions of HC3N and transitions from (H2O)-O-18, (SiO)-Si-29, and CH2CO are detected for the first time outside the Galaxy. No hydrogen recombination lines have been detected in the 40 GHz window covered. The emission feature at the transition frequency of H31 alpha line is identified to be an HC3N molecular line, challenging the previous detections reported at this frequency. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9 '' x 1.9 '' which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. Conclusions. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (similar to 10(-5)), derived from the isotopologue (H2O)-O-18, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require similar to 2-8 x 10(6) hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
  •  
7.
  • Soderberg, A. M., et al. (författare)
  • PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 752:2, s. 78-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN 2011dh using data from the Swift and Chandra satellites, placing it among the best-studied X-ray supernovae (SNe) to date. We further present millimeter and radio data obtained with the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the Expanded Very Large Array during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic data set is well described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. In this scenario, the shock partition fractions deviate from equipartition by a factor, (epsilon(e)/epsilon(B)) similar to 30. We derive the properties of the shock wave and the circumstellar environment and find a time-averaged shock velocity of (v) over bar approximate to 0.1c and a progenitor mass-loss rate of (M) over dot approximate to 6x10(-5) M-circle dot yr(-1) (for an assumed wind velocity, v(w) = 1000 km s(-1)). We show that these properties are consistent with the sub-class of Type IIb SNe characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of R-* approximate to 10(11) cm, in line with the expectations for a Type cIIb SN. Together, these diagnostics are difficult to reconcile with the extended radius of the putative yellow supergiant progenitor star identified in archival Hubble Space Telescope observations, unless the stellar density profile is unusual. Finally, we searched for the high-energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the shock breakout pulse was detectable with current instruments but likely missed due to their limited temporal/spatial coverage. Future all-sky missions will regularly detect shock breakout emission from compact SN progenitors enabling prompt follow-up observations with sensitive multi-wavelength facilities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy