SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petrelli Alessandra) "

Sökning: WFRF:(Petrelli Alessandra)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battaglia, Manuela, et al. (författare)
  • Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:1, s. 5-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
  •  
2.
  • Marchetti, Fabio, et al. (författare)
  • Zinc(II) Complex with Pyrazolone-Based Hydrazones is Strongly Effective against Trypanosoma brucei Which Causes African Sleeping Sickness
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:34, s. 13561-13575
  • Tidskriftsartikel (refereegranskat)abstract
    • Two pyrazolone-based hydrazones H2L′ [in general, H2L′ in detail, H2L1 = 5-methyl-2-phenyl-4-(2-phenyl-1-(2-(4-(trifluoromethyl)phenyl)hydrazineyl)ethyl)-2,4-dihydro-3H-pyrazol-3-one, H2L2 = (Z)-5-methyl-2-phenyl-4-(2-phenyl-1-(2-(pyridin-2-yl)hydrazineyl)ethylidene)-2,4-dihydro-3H-pyrazol-3-one] were reacted with Zn(II) and Cu(II) acceptors affording the complexes [Zn(HL1)2(MeOH)2], [Cu(HL1)2], and [M(HL2)2] (M = Cu or Zn). X-ray and DFT studies showed the free proligands to exist in the N-H,N-H tautomeric form and that in [Zn(HL1)2(MeOH)2], zinc is six-coordinated by the N,O-chelated (HL1) ligand and other two oxygen atoms of coordinated methanol molecules, while [Cu(HL1)2] adopts a square planar geometry with the two (HL1) ligands in anti-conformation. Finally, the [M(HL2)2] complexes are octahedral with the two (HL2) ligands acting as κ-O,N,N-donors in planar conformation. Both the proligands and metal complexes were tested against the parasite Trypanosoma brucei and Balb3T3 cells. The Zn(II) complexes were found to be very powerful, more than the starting proligands, while maintaining a good safety level. In detail, H2L1 and its Zn(II) complex have high selective index (55 and >100, respectively) against T. brucei compared to the mammalian Balb/3T3 reference cells. These results encouraged the researchers to investigate the mechanism of action of these compounds that have no structural relations with the already known drugs used against T. brucei. Interestingly, the analysis of NTP and dNTP pools in T. brucei treated by H2L1 and its Zn(II) complex showed that the drugs had a strong impact on the CTP pools, making it likely that CTP synthetase is the targeted enzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy