SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petroutsos Dimitris) "

Sökning: WFRF:(Petroutsos Dimitris)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mamma, Diomi, et al. (författare)
  • Removal of 1,3-dichloro2-propanol and 3-chloro-1,2-propanediol by the whole cell system of Pseudomonas putida DSM 437
  • 2006
  • Ingår i: Journal of Environmental Science and Health. Part A. - : Informa UK Limited. - 1093-4529 .- 1532-4117. ; 41:3, s. 303-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The removal of 1,3-dichloro-2-propanol (1,3-DCP), 3-chloro-1,2-propanediol (3-CPD) and their mixtures at concentrations up to 1000 mg · L−1 by the whole cell system of Pseudomonas putida DSM 437 was investigated. The 1,3-DCP removal rates ranged from 2.36 to 10.55 mg · L−1 · h−1; 3-CPD exhibited approximately two times higher removal rates compared to 1,3-DCP for all concentrations tested. Removal of 1,3-DCP and 3-CPD followed first-order kinetics with rate constants of 0.0109 h−1 and 0.0206 h−1, respectively. When the whole cell system of P. putida DSM 437 was applied to mixtures of the two halohdrins, complete removal of 1,3-DCP was achieved at 144 h while removal of 3-CPD was completed at times ranging from 72 to 144 h. Time to achieve 50% removal of both halohydrins depends on the initial concentration of each in the mixture. For 1,3-DCP, it ranged from 40.55 h at 200 mg · L−1 to 53.28 h at 500 mg · L−1 while the respected values for 3-CPD were 33.39 and 68.91 h.
  •  
2.
  • Petroutsos, Dimitris, et al. (författare)
  • Removal of p-chlorophenol by the marine microalga Tetraselmis marina
  • 2007
  • Ingår i: Journal of Applied Phycology. - : Springer Science and Business Media LLC. - 0921-8971 .- 1573-5176. ; 19:5, s. 485-490
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of Tetraselmis marina, a green coastal microalga, to remove chlorophenols under photoautotrophic conditions was investigated. T.marina was able to grow in the presence of 20 mg L−1 of the phenolic compounds tested. The EC50 (growth rate) value of p-chlorophenol (p-CP) to T.marina was found to be 25.5 mg L−1. The microalga was able to remove chlorophenols, showing higher efficiency for p-CP. The effect of photoregime and NaHCO3 concentration on p-CP removal was investigated. Under continuous illumination with 1 g L−1 NaHCO3 initial concentration T.marina removed 65% of 20 mg L−1 in a 10-day cultivation period.
  •  
3.
  • Allorent, Guillaume, et al. (författare)
  • Photoreceptor-dependent regulation of photoprotection
  • 2017
  • Ingår i: Current opinion in plant biology. - : Elsevier BV. - 1369-5266 .- 1879-0356. ; 37, s. 102-108
  • Tidskriftsartikel (refereegranskat)abstract
    • In photosynthetic organisms, proteins in the light-harvesting complex (LHC) harvest light energy to fuel photosynthesis, whereas photoreceptor proteins are activated by the different wavelengths of the light spectrum to regulate cellular functions. Under conditions of excess light, blue-light photoreceptors activate chloroplast avoidance movements in sessile plants, and blue- and green-light photoreceptors cause motile algae to swim away from intense light. Simultaneously, LHCs switch from light-harvesting mode to energy-dissipation mode, which was thought to be independent of photoreceptor-signaling up until recently. Recent advances, however, indicate that energy dissipation in green algae is controlled by photoreceptors activated by blue and UV-B light, and new molecular links have been established between photoreception and photoprotection.
  •  
4.
  • Arend, Marius, et al. (författare)
  • Widening the landscape of transcriptional regulation of green algal photoprotection
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii’s responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.
  •  
5.
  • Bailleul, Benjamin, et al. (författare)
  • Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7565, s. 366-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
  •  
6.
  • Bo, Davide Dal, et al. (författare)
  • Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via β-oxidation in this oleaginous alga.
  •  
7.
  • Boudière, Laurence, et al. (författare)
  • Glycerolipids in photosynthesis : composition, synthesis and trafficking.
  • 2014
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434 .- 0005-2728. ; 1837:4, s. 470-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
  •  
8.
  • Curien, Gilles, et al. (författare)
  • The Water to Water Cycles in Microalgae.
  • 2016
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 57:7, s. 1354-1363
  • Tidskriftsartikel (refereegranskat)abstract
    • In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O2 reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae.
  •  
9.
  • Ezzedine, Jade A., et al. (författare)
  • Adaptive traits of cysts of the snow alga Sanguina nivaloides unveiled by 3D subcellular imaging
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sanguina nivaloides is the main alga forming red snowfields in high mountains and Polar Regions. It is non-cultivable. Analysis of environmental samples by X-ray tomography, focused-ion-beam scanning-electron-microscopy, physicochemical and physiological characterization reveal adaptive traits accounting for algal capacity to reside in snow. Cysts populate liquid water at the periphery of ice, are photosynthetically active, can survive for months, and are sensitive to freezing. They harbor a wrinkled plasma membrane expanding the interface with environment. Ionomic analysis supports a cell efflux of K+, and assimilation of phosphorus. Glycerolipidomic analysis confirms a phosphate limitation. The chloroplast contains thylakoids oriented in all directions, fixes carbon in a central pyrenoid and produces starch in peripheral protuberances. Analysis of cells kept in the dark shows that starch is a short-term carbon storage. The biogenesis of cytosolic droplets shows that they are loaded with triacylglycerol and carotenoids for long-term carbon storage and protection against oxidative stress.
  •  
10.
  • Finazzi, Giovanni, et al. (författare)
  • Ions channels/transporters and chloroplast regulation.
  • 2015
  • Ingår i: Cell Calcium. - : Elsevier BV. - 0143-4160 .- 1532-1991. ; 58:1, s. 86-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
  •  
11.
  • Flori, Serena, et al. (författare)
  • Plastid thylakoid architecture optimizes photosynthesis in diatoms
  • 2017
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.
  •  
12.
  • Hochmal, Ana Karina, et al. (författare)
  • Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast
  • 2016
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium (Ca2+) and redox signalling play important roles in acclimation processes from archaea to eukaryotic organisms. Herein we characterized a unique protein from Chlamydomonas reinhardtii that has the competence to integrate Ca2+- and redox-related signalling. This protein, designated as calredoxin (CRX), combines four Ca2+-binding EF-hands and a thioredoxin (TRX) domain. A crystal structure of CRX, at 1.6 Å resolution, revealed an unusual calmodulin-fold of the Ca2+-binding EF-hands, which is functionally linked via an inter-domain communication path with the enzymatically active TRX domain. CRX is chloroplast-localized and interacted with a chloroplast 2-Cys peroxiredoxin (PRX1). Ca2+-binding to CRX is critical for its TRX activity and for efficient binding and reduction of PRX1. Thereby, CRX represents a new class of Ca2+-dependent ‘sensor-responder’ proteins. Genetically engineered Chlamydomonas strains with strongly diminished amounts of CRX revealed altered photosynthetic electron transfer and were affected in oxidative stress response underpinning a function of CRX in stress acclimation.
  •  
13.
  • Panagiotou, Gianni, 1974, et al. (författare)
  • Fermentation characteristics of Fusarium oxysporum grown on acetate
  • 2008
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; :99, s. 7397-7401
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F. oxysporum cells could tolerate was 0.8% w/v while glucose was consumed preferentially to acetate. The activity of isocitrate lyase was high when cells were grown on acetate and acetate plus glucose indicating an activation of the glyoxylate cycle. Investigation of the metabolic fingerprinting and footprinting revealed higher levels of intracellular and extracellular TCA cycle intermediates when F. oxysporum cells were grown on mixtures of acetate and glucose compared to growth on only glycose. Our data support the hypothesis that a higher flux through TCA cycle during acetate consumption could significantly increase the pool of NADH, resulting in the activation of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate.
  •  
14.
  • Petroutsos, Dimitris, et al. (författare)
  • A blue-light photoreceptor mediates the feedback regulation of photosynthesis
  • 2016
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 537:7621, s. 563-566
  • Tidskriftsartikel (refereegranskat)abstract
    • In plants and algae, light serves both as the energy source for photosynthesis and a biological signal that triggers cellular responses via specific sensory photoreceptors. Red light is perceived by bilin-containing phytochromes and blue light by the flavin-containing cryptochromes and/or phototropins (PHOTs)1, the latter containing two photosensory light, oxygen, or voltage (LOV) domains2. Photoperception spans several orders of light intensity3, ranging from far below the threshold for photosynthesis to values beyond the capacity of photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death, processes prevented by enhanced thermal dissipation via high-energy quenching (qE), a key photoprotective response4. Here we show the existence of a molecular link between photoreception, photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (light-harvesting complex stress-related protein 3) in high light intensities. This control requires blue-light perception by LOV domains on PHOT, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. Mutants deficient in the PHOT gene display severely reduced fitness under excessive light conditions, indicating that the sensing, utilization, and dissipation of light is a concerted process that plays a vital role in microalgal acclimation to environments of variable light intensities.
  •  
15.
  •  
16.
  • Petroutsos, Dimitris, et al. (författare)
  • Evolution of galactoglycerolipid biosynthetic pathways--from cyanobacteria to primary plastids and from primary to secondary plastids.
  • 2014
  • Ingår i: Progress in lipid research. - : Elsevier BV. - 0163-7827 .- 1873-2194. ; 54, s. 68-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic membranes have a unique lipid composition that has been remarkably well conserved from cyanobacteria to chloroplasts. These membranes are characterized by a very high content in galactoglycerolipids, i.e., mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively). Galactoglycerolipids make up the bulk of the lipid matrix in which photosynthetic complexes are embedded. They are also known to fulfill specific functions, such as stabilizing photosystems, being a source of polyunsaturated fatty acids for various purposes and, in some eukaryotes, being exported to other subcellular compartments. The conservation of MGDG and DGDG suggests that selection pressures might have conserved the enzymes involved in their biosynthesis, but this does not appear to be the case. Important evolutionary transitions comprise primary endosymbiosis (from a symbiotic cyanobacterium to a primary chloroplast) and secondary endosymbiosis (from a symbiotic unicellular algal eukaryote to a secondary plastid). In this review, we compare biosynthetic pathways based on available molecular and biochemical data, highlighting enzymatic reactions that have been conserved and others that have diverged or been lost, as well as the emergence of parallel and alternative biosynthetic systems originating from other metabolic pathways. Questions for future research are highlighted.
  •  
17.
  • Redekop, Petra, et al. (författare)
  • Transcriptional regulation of photoprotection in dark-to-light transition—More than just a matter of excess light energy
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:22
  • Tidskriftsartikel (refereegranskat)abstract
    • In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of “photoprotective” genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
  •  
18.
  • Ruiz-Sola, M Águila, et al. (författare)
  • A Toolkit for the Characterization of the Photoprotective Capacity of Green Algae.
  • 2018
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer US. - 1064-3745 .- 1940-6029. ; 1829, s. 315-323
  • Tidskriftsartikel (refereegranskat)abstract
    • While light is a crucial energy source in photosynthetic organisms, if its intensity exceeds their photosynthetic capacity it may cause light-induced damage. A dominant photoprotective mechanism in plants and algae is the qE (quenching of energy), the major component of nonphotochemical quenching (NPQ). qE is a process that dissipates absorbed excitation energy as heat, ensuring cell survival even under adverse conditions. The present protocol gathers together a set of experimental approaches (in vivo chlorophyll fluorescence, western blotting, growth and cellular chlorophyll content at very strong light) that collectively allow for the characterization of the qE capacity of the model green algae Chlamydomonas reinhardtii.
  •  
19.
  • Ruiz-Sola, M. Águila, et al. (författare)
  • Light-independent regulation of algal photoprotection by CO2 availability
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
  •  
20.
  • Six, A., et al. (författare)
  • Red light induces starch accumulation in Chlorella vulgaris without affecting photosynthesis efficiency, unlike abiotic stress
  • 2024
  • Ingår i: Algal Research. - : Elsevier. - 2211-9264. ; 80
  • Tidskriftsartikel (refereegranskat)abstract
    • Microalgae show great promise as sources of starch, one of the most widely consumed macromolecules. In this study, we evaluated the impact of three starch-inducing factors, namely nitrogen deprivation, supra-optimal temperature, and red light, on the physiology and starch accumulation capacity of Chlorella vulgaris. This starch accumulation was monitored by measuring the total carbohydrate content and transmission electron microscopy (TEM) imaging. Nitrogen deprivation and a supra-optimal temperature of 39 °C resulted in carbohydrate contents of 69.7 and 64.3 % of dry weight (DW) respectively. This constituted a 5.3- and 3.3-fold increase in carbohydrate productivity compared to the control, after 4 days of cultivation. During this period, carbohydrates represented over 80 % of the produced material (DW basis). However, nitrogen deprivation and supra-optimal temperature were accompanied by extensive stress, leading to lower cell division rates and damage to the photosynthetic apparatus. Red light illumination resulted in a more moderate production of carbohydrates. After 4 days of cultivation, the carbohydrate content reached 46.8 %, representing a 3.0-fold increase in productivity compared to control. The composition of the starch formed under red light was surprisingly poor in amylose, similar to transitory-type starch rather than storage starch. Most notably, the starch accumulation under red light was sustained over 7 days without affecting the rate of cell division and quantum yield efficiency. To the best of our knowledge, red light is the only factor reported so far to induce a significant starch accumulation without hindering cell division and photosynthesis efficiency, even after long-term exposure (7 days). Furthermore, all three conditions induced a cell wall thickening, albeit without affecting the recovery of accumulated starch by high-pressure homogenization. These results highlight the potential of red light as a starch inducer in Chlorella vulgaris and open up perspectives for the production of starch-based bioplastics from microalgae.
  •  
21.
  • Villanova, Valeria, et al. (författare)
  • Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum
  • 2017
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 372:1728, s. 20160404-20160404
  • Tidskriftsartikel (refereegranskat)abstract
    • Diatoms are prominent marine microalgae, interesting not only from an ecological point of view, but also for their possible use in biotechnology applications. They can be cultivated in phototrophic conditions, using sunlight as the sole energy source. Some diatoms, however, can also grow in a mixotrophic mode, wherein both light and external reduced carbon contribute to biomass accumulation. In this study, we investigated the consequences of mixotrophy on the growth and metabolism of the pennate diatom Phaeodactylum tricornutum, using glycerol as the source of reduced carbon. Transcriptomics, metabolomics, metabolic modelling and physiological data combine to indicate that glycerol affects the central-carbon, carbon-storage and lipid metabolism of the diatom. In particular, provision of glycerol mimics typical responses of nitrogen limitation on lipid metabolism at the level of triacylglycerol accumulation and fatty acid composition. The presence of glycerol, despite provoking features reminiscent of nutrient limitation, neither diminishes photosynthetic activity nor cell growth, revealing essential aspects of the metabolic flexibility of these microalgae and suggesting possible biotechnological applications of mixotrophy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy