SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peysson Y.) "

Sökning: WFRF:(Peysson Y.)

  • Resultat 1-42 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
3.
  • Bécoulet, A., et al. (författare)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
26.
  • Hillairet, J., et al. (författare)
  • Recent progress on lower hybrid current drive and implications for ITER
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower hybrid current drive is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current and to reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like lower hybrid (LH) launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700 kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long-pulse scenarios. However, in order to achieve pure stationary LH-sustained plasmas, some R&D is needed to increase the reliability of all the systems and codes, from radio-frequency (RF) sources to plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D programme towards an ITER LH system and by the validation of an integrated LH modelling suite of codes. In 2011, the RF design of a mode converter was validated at a low power. A 500 kW/5 s RF window is currently under manufacture and will be tested at a high power in 2012 in collaboration with the National Fusion Research Institute. All of this work aims to reduce the operational risks associated with the ITER steady-state operations.
  •  
27.
  •  
28.
  • Decker, J., et al. (författare)
  • Modelling of LHCD at various densities in tore supra tokamak
  • 2012
  • Ingår i: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 934-937
  • Konferensbidrag (refereegranskat)
  •  
29.
  • Decker, Joan, 1977, et al. (författare)
  • Numerical characterization of bump formation in the runaway electron tail
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:2, s. 025016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham–Lorentz–Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker–Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.
  •  
30.
  • Falchetto, G. L., et al. (författare)
  • The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 54:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application.The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in particular, to the analysis of the edgeMHDstability of ASDEX Upgrade type-I ELMy H-mode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics and physics problems are also presented, showing the current status of the ITM-TF modelling suite.
  •  
31.
  • Goniche, M., et al. (författare)
  • Lower hybrid current drive at high density on Tore Supra
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower hybrid current drive (LHCD) experiments with line-averaged density varying between 1.5 x 1019 and 6 x 10(19) m(-3) are performed on the Tore Supra tokamak under quasi-steady-state conditions with respect to the fast electron dynamics. The LHCD efficiency is analysed from the fast electron bremsstrahlung (FEB) and electron cyclotron emission (ECE). The effect of plasma equilibrium and particle fuelling is documented. It is concluded that the fast decay of FEB with plasma density could be consistent with simple scaling of the current drive efficiency and FEB. Plasma edge measurements are presented looking for the effect on fast electron emission. In a specific case of particle fuelling, an anomalous decay of the hard x-ray and ECE signals suggests deleterious interaction of the wave with edge plasma.
  •  
32.
  •  
33.
  • Imbeaux, F., et al. (författare)
  • A generic data structure for integrated modelling of tokamak physics and subsystems
  • 2010
  • Ingår i: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 181:6, s. 987-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and workflow organisation, which are described for the first time in this paper The backbone of the system is a physics- and workflow-oriented data structure which allows for the deployment of a fully modular and flexible workflow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues (C) 2010 Elsevier B.V All rights reserved
  •  
34.
  • Imbeaux, F., et al. (författare)
  • Data structure for the European Integrated Tokamak Modelling Task Force
  • 2008
  • Ingår i: 35th European Physical Society Conference on Plasma Physics, EPS 2008 Combined with the 10th International Workshop on Fast Ignition of Fusion Targets; Hersonissos, Crete; Greece; 9 June 2008 through 13 June 2008. - 9781622763351 ; 32:2, s. 1126-1129
  • Konferensbidrag (refereegranskat)
  •  
35.
  •  
36.
  •  
37.
  • Nilsson, Emelie, 1985, et al. (författare)
  • Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
  •  
38.
  • Olasz, S., et al. (författare)
  • Runaway electron modelling in the EU-IM framework
  • 2021
  • Ingår i: 47th EPS Conference on Plasma Physics, EPS 2021. - : European Physical Society (EPS). ; 2021-June, s. 1156-1159
  • Konferensbidrag (refereegranskat)abstract
    • The Runaway Electron Test Workflow was used to study the behaviour of the Dreicer generation of runaway electrons in dynamic scenarios to find a parameter which can be used to determine the need of kinetic modelling in more complex simulations. It was found that for processes which vary faster than the collision time at the critical velocity for runaway electron generation, kinetic modelling is advised to capture potential kinetic effects. A more complex tool, the ETS have been used to simulate a self-consistent thermal quench induced by massive material injection with promising initial results. Development of ETS capabilities continues with introduction of kinetic modelling and moving onto the new ETS6 versions.
  •  
39.
  • Parail, V., et al. (författare)
  • Integrated modelling of ITER reference scenarios
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The ITER Scenario Modelling Working Group (ISM WG) is organized within the European Task Force on Integrated Tokamak Modelling (ITM-TF). The main responsibility of the WG is to advance a pan-European approach to integrated predictive modelling of ITER plasmas with the emphasis on urgent issues, identified during the ITER Design Review. Three major topics are discussed, which are considered as urgent and where the WG has the best possible expertize. These are modelling of current profile control, modelling of density control and impurity control in ITER (the last two topics involve modelling of both core and SOL plasma). Different methods of heating and current drive are tested as controllers for the current profile tailoring during the current ramp-up in ITER. These include Ohmic, NBI, ECRH and LHCD methods. Simulation results elucidate the available operational margins and rank different methods according to their ability to meet different requirements. A range of ITER-relevant' plasmas from existing tokamaks were modelled. Simulations confirmed that the theory-based transport model, GLF23, reproduces the density profile reasonably well and can be used to assess ITER profiles with both pellet injection and gas puffing. In addition, simulations of the SOL plasma were launched using both H-mode and L-mode models for perpendicular transport within the edge barrier and in the SOL. Finally, an integrated approach was also used for the predictive modelling of impurity accumulation in ITER. This includes helium ash, extrinsic impurities (such as argon) and impurities coming from the wall (including tungsten). The relative importance of anomalous and neo-classical pinch contributions towards impurity penetration through the edge transport barrier and further accumulation in the core was assessed.
  •  
40.
  •  
41.
  • Pokol, Gergö, 1979, et al. (författare)
  • Runaway electron modelling in the self-consistent core European Transport Simulator
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Relativistic runaway electrons are a major concern in tokamaks. Although significant theoretical development had been undertaken in recent decades, we still lack a self-consistent simulator that could simultaneously capture all aspects of this phenomenon. The European framework for Integrated Modelling (EU-IM) facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. The ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.
  •  
42.
  • Walkowiak, J., et al. (författare)
  • First numerical analysis of runaway electron generation in tungsten-rich plasmas towards ITER
  • 2024
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The disruption and runaway electron analysis model code was extended to include tungsten impurities in disruption simulations with the aim of studying the runaway electron (RE) generation. This study investigates RE current sensitivity on the following plasma parameters and modelling choices: tungsten concentration, magnetic perturbation strength, electron modelling, thermal quench time and tokamak geometry-ITER-like or ASDEX-like. Our investigation shows that a tungsten concentration below 10-3 does not cause significant RE generation on its own. However, at higher concentrations it is possible to reach a very high RE current. Out of the two tested models of electrons in plasma: fluid and isotropic (kinetic), results from the fluid model are more conservative, which is useful when it comes to safety analysis. However, these results are overly pessimistic when compared to the isotropic model, which is based on a more reliable approach. Our results also show that the hot-tail RE generation mechanism is dominant as a primary source of RE in tungsten induced disruptions, usually providing orders of magnitude higher RE seed than Dreicer generation. We discuss best practices for simulations with tungsten-rich plasma, present the dependence of the safety limits on modelling choices and highlight the biggest shortcoming of the current simulation techniques. The obtained results pave the way for a wider analysis of tungsten impact on the disruption dynamics, including the mitigation techniques for ITER in the case of strong contamination of the plasma with tungsten.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-42 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy