SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pfeffer Paul E.) "

Sökning: WFRF:(Pfeffer Paul E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pfeffer, W. Tad, et al. (författare)
  • The Randolph Glacier Inventory : a globally complete inventory of glaciers
  • 2014
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 60:221, s. 537-552
  • Tidskriftsartikel (refereegranskat)abstract
    • The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the similar to 198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999-2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km(2). The uncertainty, about +/- 5%, is derived from careful single-glacier and basin-scale uncertainty estimates and comparisons with inventories that were not sources for the RGI. The main contributors to uncertainty are probably misinterpretation of seasonal snow cover and debris cover. These errors appear not to be normally distributed, and quantifying them reliably is an unsolved problem. Combined with digital elevation models, the RGI glacier outlines yield hypsometries that can be combined with atmospheric data or model outputs for analysis of the impacts of climatic change on glaciers. The RGI has already proved its value in the generation of significantly improved aggregate estimates of glacier mass changes and total volume, and thus actual and potential contributions to sea-level rise.
  •  
2.
  • Heaney, Liam G., et al. (författare)
  • Eosinophilic and Noneosinophilic Asthma : An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort
  • 2021
  • Ingår i: Chest. - : Elsevier BV. - 0012-3692. ; 160:3, s. 814-830
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Phenotypic characteristics of patients with eosinophilic and noneosinophilic asthma are not well characterized in global, real-life severe asthma cohorts. Research Question: What is the prevalence of eosinophilic and noneosinophilic phenotypes in the population with severe asthma, and can these phenotypes be differentiated by clinical and biomarker variables? Study Design and Methods: This was an historical registry study. Adult patients with severe asthma and available blood eosinophil count (BEC) from 11 countries enrolled in the International Severe Asthma Registry (January 1, 2015-September 30, 2019) were categorized according to likelihood of eosinophilic phenotype using a predefined gradient eosinophilic algorithm based on highest BEC, long-term oral corticosteroid use, elevated fractional exhaled nitric oxide, nasal polyps, and adult-onset asthma. Demographic and clinical characteristics were defined at baseline (ie, 1 year before or closest to date of BEC). Results: One thousand seven hundred sixteen patients with prospective data were included; 83.8% were identified as most likely (grade 3), 8.3% were identified as likely (grade 2), and 6.3% identified as least likely (grade 1) to have an eosinophilic phenotype, and 1.6% of patients showed a noneosinophilic phenotype (grade 0). Eosinophilic phenotype patients (ie, grades 2 or 3) showed later asthma onset (29.1 years vs 6.7 years; P < .001) and worse lung function (postbronchodilator % predicted FEV1, 76.1% vs 89.3%; P = .027) than those with a noneosinophilic phenotype. Patients with noneosinophilic phenotypes were more likely to be women (81.5% vs 62.9%; P = .047), to have eczema (20.8% vs 8.5%; P = .003), and to use anti-IgE (32.1% vs 13.4%; P = .004) and leukotriene receptor antagonists (50.0% vs 28.0%; P = .011) add-on therapy. Interpretation: According to this multicomponent, consensus-driven, and evidence-based eosinophil gradient algorithm (using variables readily accessible in real life), the severe asthma eosinophilic phenotype was more prevalent than previously identified and was phenotypically distinct. This pragmatic gradient algorithm uses variables readily accessible in primary and specialist care, addressing inherent issues of phenotype heterogeneity and phenotype instability. Identification of treatable traits across phenotypes should improve therapeutic precision.
  •  
3.
  • Perez-de-Llano, Luis, et al. (författare)
  • Impact of pre-biologic impairment on meeting domain-specific biologic responder definitions in patients with severe asthma
  • Ingår i: Annals of Allergy, Asthma and Immunology. - 1081-1206.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is little agreement on clinically useful criteria for identifying real-world responders to biologic treatments for asthma. Objective: To investigate the impact of pre-biologic impairment on meeting domain-specific biologic responder definitions in adults with severe asthma. Methods: This was a longitudinal, cohort study across 22 countries participating in the International Severe Asthma Registry (https://isaregistries.org/) between May 2017 and January 2023. Change in 4 asthma domains (exacerbation rate, asthma control, long-term oral corticosteroid [LTOCS] dose, and lung function) was assessed from biologic initiation to 1 year post-treatment (minimum 24 weeks). Pre- to post-biologic changes for responders and nonresponders were described along a categorical gradient for each domain derived from pre-biologic distributions (exacerbation rate: 0 to 6+/y; asthma control: well controlled to uncontrolled; LTOCS: 0 to >30 mg/d; percent-predicted forced expiratory volume in 1 second [ppFEV1]: <50% to ≥80%). Results: Percentage of biologic responders (ie, those with a category improvement pre- to post-biologic) varied by domain and increased with greater pre-biologic impairment, increasing from 70.2% to 90.0% for exacerbation rate, 46.3% to 52.3% for asthma control, 31.1% to 58.5% for LTOCS daily dose, and 35.8% to 50.6% for ppFEV1. The proportion of patients having improvement post-biologic tended to be greater for anti–IL-5/5R compared with for anti-IgE for exacerbation, asthma control, and ppFEV1 domains, irrespective of pre-biologic impairment. Conclusion: Our results provide realistic outcome-specific post-biologic expectations for both physicians and patients, will be foundational to inform future work on a multidimensional approach to define and assess biologic responders and response, and may enhance appropriate patient selection for biologic therapies. Trial Registration: The ISAR database has ethical approval from the Anonymous Data Ethics Protocols and Transparency (ADEPT) committee (ADEPT0218) and is registered with the European Union Electronic Register of Post-Authorization studies (ENCEPP/DSPP/23720). The study was designed, implemented, and reported in compliance with the European Network Centres for Pharmacoepidemiology and Pharmacovigilance (ENCEPP) Code of Conduct (EUPAS38288) and with all applicable local and international laws and regulation, and registered with ENCEPP (https://www.encepp.eu/encepp/viewResource.htm?id=38289). Governance was provided by ADEPT (registration number: ADEPT1220).
  •  
4.
  • Pfeffer, Paul E., et al. (författare)
  • Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes
  • 2018
  • Ingår i: Immunology. - : John Wiley & Sons. - 0019-2805 .- 1365-2567. ; 153:4, s. 502-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies have consistently shown associations between elevated concentrations of urban particulate matter (UPM) air pollution and exacerbations of asthma and chronic obstructive pulmonary disease, which are both associated with viral respiratory infections. The effects of UPM on dendritic cell (DC) -stimulated CD4 T lymphocytes have been investigated previously, but little work has focused on CD8 T-lymphocyte responses despite their importance in anti-viral immunity. To address this, we examined the effects of UPM on DC-stimulated naive CD8 T-cell responses. Expression of the maturation/activation markers CD83, CCR7, CD40 and MHC class I on human myeloid DCs (mDCs) was characterized by flow cytometry after stimulation with UPM in vitro in the presence/absence of granulocyte-macrophage colony-stimulating factor (GM-CSF). The capacity of these mDCs to stimulate naive CD8 T-lymphocyte responses in allogeneic co-culture was then assessed by measuring T-cell cytokine secretion using cytometric bead array, and proliferation and frequency of interferon-γ (IFN-γ)-producing T lymphocytes by flow cytometry. Treatment of mDCs with UPM increased expression of CD83 and CCR7, but not MHC class I. In allogeneic co-cultures, UPM treatment of mDCs enhanced CD8 T-cell proliferation and the frequency of IFN-γ+ cells. The secretion of tumour necrosis factor-α, interleukin-13, Granzyme A and Granzyme B were also increased. GM-CSF alone, and in concert with UPM, enhanced many of these T-cell functions. The PM-induced increase in Granzyme A was confirmed in a human experimental diesel exposure study. These data demonstrate that UPM treatment of mDCs enhances priming of naive CD8 T lymphocytes and increases production of pro-inflammatory cytokines. Such UPM-induced stimulation of CD8 cells may potentiate T-lymphocyte cytotoxic responses upon concurrent airway infection, increasing bystander damage to the airways.
  •  
5.
  • Kumar, Abhinav, et al. (författare)
  • Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid
  • 2016
  • Ingår i: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 12:4, s. 1033-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • When inhaled nanoparticles deposit in the lungs, they transit through respiratory tract lining fluid (RTLF) acquiring a biomolecular corona reflecting the interaction of the RTLF with the nanomaterial surface. Label-free snapshot proteomics was used to generate semiquantitative profiles of corona proteins formed around silica (SiO2) and poly(vinyl) acetate (PVAc) nanoparticles in RTLF, the latter employed as an archetype drug delivery vehicle. The evolved PVAc corona was significantly enriched compared to that observed on SiO2 nanoparticles (698 vs. 429 proteins identified); however both coronas contained a substantial contribution from innate immunity proteins, including surfactant protein A, napsin A and complement (C1q and C3) proteins. Functional protein classification supports the hypothesis that corona formation in RTLF constitutes opsonisation, preparing particles for phagocytosis and clearance from the lungs. These data highlight how an understanding of the evolved corona is necessary for the design of inhaled nanomedicines with acceptable safety and tailored clearance profiles. From the Clinical Editor: Inhaled nanoparticles often acquire a layer of protein corona while they go through the respiratory tract. Here, the authors investigated the identity of these proteins. The proper identification would improve the understanding of the use of inhaled nanoparticles in future therapeutics. (C) 2016 Published by Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy