SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Piao S. L.) "

Search: WFRF:(Piao S. L.)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Piao, S. L., et al. (author)
  • The carbon budget of terrestrial ecosystems in East Asia over the last two decades
  • 2012
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:9, s. 3571-3586
  • Journal article (peer-reviewed)abstract
    • This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North and South Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990-2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's terrestrial carbon sink from these three approaches are comparable: -0.293 +/- 0.033 PgC yr(-1) from inventory-remote sensing model-data fusion approach, -0.413 +/- 0.141 PgC yr(-1)(not considering biofuel emissions) or -0.224 +/- 0.141 PgC yr(-1) (considering biofuel emissions) for carbon cycle models, and -0.270 +/- 0.507 PgC yr(-1) for atmospheric inverse models. Here and in the following, the numbers behind +/- signs are standard deviations. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of -0.289 +/- 0.135 PgC yr(-1), while land-use change and nitrogen deposition had a contribution of -0.013 +/- 0.029 PgC yr(-1) and -0.107 +/- 0.025 PgC yr(-1), respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13-27% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial territory over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
  •  
2.
  • Luyssaert, S., et al. (author)
  • CO2 balance of boreal, temperate, and tropical forests derived from a global database
  • 2007
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:12, s. 2509-2537
  • Research review (peer-reviewed)abstract
    • Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
  •  
3.
  • Sitch, S., et al. (author)
  • Recent trends and drivers of regional sources and sinks of carbon dioxide
  • 2015
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 12:3, s. 653-679
  • Journal article (peer-reviewed)abstract
    • The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 +/- 0.7 PgC yr(-1) with a small significant trend of -0.06 +/- 0.03 PgC yr(-2) (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 +/- 0.2 PgC yr(-1) with a trend in the net C uptake that is indistinguishable from zero (-0.01 +/- 0.02 PgC yr(-2)). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of 0.02 +/- 0.01 PgC yr(-2). Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 +/- 0.08 PgC yr(-2) exceeds a significant trend in heterotrophic respiration of 0.16 +/- 0.05 PgC yr(-2) - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (0.04 +/- 0.01 PgC yr(-2)), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
  •  
4.
  • Sitch, S., et al. (author)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • In: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Journal article (other academic/artistic)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
5.
  • Zeng, Z., et al. (author)
  • Deforestation-induced warming over tropical mountain regions regulated by elevation
  • 2021
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14, s. 23-29
  • Journal article (peer-reviewed)abstract
    • Agriculture is expanding in tropical mountainous areas, yet its climatic effect is poorly understood. Here, we investigate how elevation regulates the biophysical climate impacts of deforestation over tropical mountainous areas by integrating satellite-observed forest cover changes into a high-resolution land–atmosphere coupled model. We show that recent forest conversion between 2000 and 2014 increased the regional warming by 0.022±0.002°C in the Southeast Asian Massif, 0.010±0.007°C in the Barisan Mountains (Maritime Southeast Asia), 0.042±0.010°C in the Serra da Espinhaço (South America) and 0.047±0.008°C in the Albertine Rift mountains (Africa) during the local dry season. The deforestation-driven local temperature anomaly can reach up to 2°C where forest conversion is extensive. The warming from mountain deforestation depends on elevation, through the intertwined and opposing effects of increased albedo causing cooling and decreased evapotranspiration causing warming. As the elevation increases, the albedo effect increases in importance and the warming effect decreases, analogous to previously highlighted decreases of deforestation-induced warming with increasing latitude. As most new croplands are encroaching lands at low to moderate elevations, deforestation produces higher warming from suppressed evapotranspiration. Impacts of this additional warming on crop yields, land degradation and biodiversity of nearby intact ecosystems should be incorporated into future assessments.
  •  
6.
  •  
7.
  • Wang, L., et al. (author)
  • Development of a land surface model with coupled snow and frozen soil physics
  • 2017
  • In: Water Resources Research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 53:6, s. 5085-5103
  • Journal article (peer-reviewed)abstract
    • Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.
  •  
8.
  • Shen, M., et al. (author)
  • Evaporative cooling over the Tibetan plateau induced by vegetation growth
  • 2015
  • In: Proceedings of the National Academy of Science of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:30, s. 9299-9304
  • Journal article (peer-reviewed)abstract
    • In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
  •  
9.
  • Zeng, Z. Z., et al. (author)
  • A reversal in global terrestrial stilling and its implications for wind energy production
  • 2019
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:12, s. 979-985
  • Journal article (peer-reviewed)abstract
    • Wind power, a rapidly growing alternative energy source, has been threatened by reductions in global average surface wind speed, which have been occurring over land since the 1980s, a phenomenon known as global terrestrial stilling. Here, we use wind data from in situ stations worldwide to show that the stilling reversed around 2010 and that global wind speeds over land have recovered. We illustrate that decadal-scale variations of near-surface wind are probably determined by internal decadal ocean-atmosphere oscillations, rather than by vegetation growth and/or urbanization as hypothesized previously. The strengthening has increased potential wind energy by 17 +/- 2% for 2010 to 2017, boosting the US wind power capacity factor by similar to 2.5% and explains half the increase in the US wind capacity factor since 2010. In the longer term, the use of ocean-atmosphere oscillations to anticipate future wind speeds could allow optimization of turbines for expected speeds during their productive life spans.
  •  
10.
  • Li, Y., et al. (author)
  • Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems
  • 2023
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 13, s. 182-188
  • Journal article (peer-reviewed)abstract
    • The authors reveal complex drought recovery responses to phenology shifts, in that early spring can shorten or lengthen recovery, while delayed spring following drought events delays it. These effects suggest a need to incorporate phenology aspects into resilience models. The time required for an ecosystem to recover from severe drought is a key component of ecological resilience. The phenology effects on drought recovery are, however, poorly understood. These effects centre on how phenology variations impact biophysical feedbacks, vegetation growth and, ultimately, recovery itself. Using multiple remotely sensed datasets, we found that more than half of ecosystems in mid- and high-latitudinal Northern Hemisphere failed to recover from extreme droughts within a single growing season. Earlier spring phenology in the drought year slowed drought recovery when extreme droughts occurred in mid-growing season. Delayed spring phenology in the subsequent year slowed drought recovery for all vegetation types (with importance of spring phenology ranging from 46% to 58%). The phenology effects on drought recovery were comparable to or larger than other well-known postdrought climatic factors. These results strongly suggest that the interactions between vegetation phenology and drought must be incorporated into Earth system models to accurately quantify ecosystem resilience.
  •  
11.
  • Park, C. E., et al. (author)
  • Keeping global warming within 1.5 degrees C constrains emergence of aridification
  • 2018
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Aridity-the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET)-is projected to decrease (that is, areas will become drier) as a consequence of anthropogenic climate change, exacerbating land degradation and desertification(1-6). However, the timing of significant aridification relative to natural variability-defined here as the time of emergence for aridification (ToEA)-is unknown, despite its importance in designing and implementing mitigation policies(7-10). Here we estimate ToEA from projections of 27 global climate models (GCMs) under representative concentration pathways (RCPs) RCP4.5 and RCP8.5, and in doing so, identify where emergence occurs before global mean warming reaches 1.5 degrees C and 2 degrees C above the pre-industrial level. On the basis of the ensemble median ToEA for each grid cell, aridification emerges over 32% (RCP4.5) and 24% (RCP8.5) of the total land surface before the ensemble median of global mean temperature change reaches 2 degrees C in each scenario. Moreover, ToEA is avoided in about two-thirds of the above regions if the maximum global warming level is limited to 1.5 degrees C. Early action for accomplishing the 1.5 degrees C temperature goal can therefore markedly reduce the likelihood that large regions will face substantial aridification and related impacts.
  •  
12.
  • Liang, E. Y., et al. (author)
  • Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records
  • 2019
  • In: Science Bulletin. - : Elsevier BV. - 2095-9273. ; 64:14, s. 1018-1023
  • Journal article (peer-reviewed)abstract
    • Large tropical volcanic eruptions can cause short-term global cooling. However, little is known whether large tropical volcanic eruptions, like the one in Tambora/Indonesia in 1815, cause regional hydroclimatic anomalies. Using a tree-ring network of precisely dated Himalayan birch in the central Himalayas, we reconstructed variations in the regional pre-monsoon precipitation back to 1650 CE. A superposed epoch analysis indicates that the pre-monsoon regional droughts are associated with large tropical volcanic eruptions, appearing to have a strong influence on hydroclimatic conditions in the central Himalayas. In fact, the most severe drought since 1650 CE occurred after the Tambora eruption. These results suggest that dry conditions prior to monsoon in the central Himalayas were associated with explosive tropical volcanism. Prolonged La Nina events also correspond with persistent pre-monsoon droughts in the central Himalayas. Our results provide evidence that large tropical volcanic eruptions most likely induced severe droughts prior to monsoon in the central Himalayas. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
  •  
13.
  • Yao, T. D., et al. (author)
  • The imbalance of the Asian water tower
  • 2022
  • In: Nature Reviews Earth & Environment. - : Springer Science and Business Media LLC. - 2662-138X.
  • Journal article (peer-reviewed)abstract
    • The Hindu Kush-Karakoram-Himalayan system, named the Third Pole because it is the largest global store of frozen water after the polar regions, provides a reliable water supply to almost 2 billion people. Marked atmospheric warming has changed the balance of this so-called Asian water tower and altered water resources in downstream countries. In this Review, we synthesize observational evidence and model projections that describe an imbalance in the Asian water tower caused by accelerated transformation of ice and snow into liquid water. This phase change is associated with a south-north disparity due to the spatio-temporal interaction between the westerlies and the Indian monsoon. A corresponding spatial imbalance is exhibited by alterations in freshwater resources in endorheic or exorheic basins. Global warming is expected to amplify this imbalance, alleviating water scarcity in the Yellow and Yangtze River basins and increasing scarcity in the Indus and Amu Darya River basins. However, the future of the Asian water tower remains highly uncertain. Accurate predictions of future water supply require the establishment of comprehensive monitoring stations in data-scarce regions and the development of advanced coupled atmosphere-cryosphere-hydrology models. Such models are needed to inform the development of actionable policies for sustainable water resource management. Atmospheric warming has imbalanced the Hindu Kush-Karakoram-Himalayan system (the Asian water tower (AWT)). Yao et al. review observed changes in atmospheric water and freshwater AWT constituents, focusing on their future consequences for freshwater resources and vulnerable societies across downstream basins.
  •  
14.
  • Yin, Y. Y., et al. (author)
  • Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion
  • 2020
  • In: Earths Future. - : American Geophysical Union (AGU). - 2328-4277. ; 8:8
  • Journal article (peer-reviewed)abstract
    • With the increasing pressure from population growth and economic development, northern China (NC) faces a grand challenge of water scarcity, which can be further exacerbated by climatic and societal changes. The South-to-North Water Diversion (SNWD) project is designed to mitigate the water scarcity in NC. However, few studies have quantified the impact of the SNWD on water scarcity within the context of climatic and societal changes and its potential effects on economic and agricultural food in the region. We used water supply stress index (WaSSI) to quantify water scarcity within the context of environmental change in NC and developed a method to estimate the economic and agricultural impacts of the SNWD. Focuses were put on alleviating the water supply shortage and economic and agricultural benefits for the water-receiving NC. We find that societal changes, especially economic growth, are the major contributors to water scarcity in NC during 2009-2099. To completely mitigate the water scarcity of NC, at least an additional water supply of 13 billion m(3)/year (comparable to the annual diversion water by SNWD Central Route) will be necessary. Although SNWD alone cannot provide the full solution to NC's water shortage in next few decades, it can significantly alleviate the water supply stress in NC (particularly Beijing), considerably increasing the agricultural production (more than 115 Tcal/year) and bringing economic benefits (more than 51 billion RMB/year) through supplying industrial and domestic water use. Additionally, the transfer project could have impacts on the ecological environment in the exporting regions.
  •  
15.
  • Zeng, Z. K., et al. (author)
  • A new Buttiauxella phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet
  • 2016
  • In: Journal of Animal Science. - : Oxford University Press (OUP). - 0021-8812 .- 1525-3163. ; 94:2, s. 629-638
  • Journal article (peer-reviewed)abstract
    • Ten ileal T-cannulated pigs (19.26 ± 1.06 kg) were used to evaluate the effects of a novel Buttiauxella phytase on apparent ileal digestibility (AID) of AA and apparent total tract digestibility (ATTD) and hindgut disappearance of DM, GE, CP, crude fiber, NDF, and ADF as well as minerals balance. Pigs were fed in a duplicated 5 × 4 incomplete Latin square design (5 diets with 4 periods). Each period consisted of a 5-d adjustment period followed by a 3-d total collection of feces and urine and then a 2-d collection of ileal digesta. The 5 diets included a P-deficient basal diet (0.43% Ca and 0.38% total P) that was supplemented with 0 (negative control [NC]), 500, 1,000, or 20,000 phytase units (FTU)/kg phytase and a positive control (PC) diet that was P adequate (0.64% Ca and 0.52% total P). The addition of phytase to the NC diet improved (P < 0.05) AID of phytate from 11.1 to 62.8, 70.6, and 90.5% at the inclusion rates of 500, 1,000, and 20,000 FTU/kg, respectively. In general, phytase supplementation at a dose of 20,000 FTU/kg further increased (P < 0.05) AID of Ca, total P, and phytate and reduced (P < 0.05) the ileal phytate concentration compared with diets with 500 or 1,000 FTU/kg phytase. Pigs fed the diet with 20,000 FTU/kg phytase but not diets with 500 and 1,000 FTU/kg phytase showed improved (P < 0.05) ATTD of CP and AID of DM, GE, CP, Leu, Lys, Thr, Val, Asp, and Ser compared with pigs fed the PC or NC diet. However, hindgut disappearance of crude fiber and NDF (P < 0.05) were reduced in pigs fed the diet with 20,000 FTU/kg phytase compared with pigs fed the PC or NC diet. Pigs fed diets with 500 or 1,000 FTU/ kg phytase had greater ATTD and retention of Ca and P than pigs fed the NC diet but less compared with pigs fed the diet with 20,000 FTU/kg phytase. Supplementation of 20,000 FTU/kg phytase to the NC diet improved (P < 0.05) digestibility of Na, Mn, and Zn as well as retention (%) of Zn. Increasing phytase supplementation doses from 0 to 1,000 FTU/kg linearly improved (P < 0.05) retention of Mg; meanwhile, digestibility of Mg and Mn and AID of Thr showed a linear increase trend (P = 0.084). In conclusion, supplementation of the novel Buttiauxella phytase at doses up to 20,000 FTU/kg hydrolyzed most of the phytate (90%) and consequently further improved mineral and protein utilization.
  •  
16.
  •  
17.
  • Piao, H. L., et al. (author)
  • Affinity-matured recombinant immunotoxin targeting gangliosides 3 '-isoLM1 and 3 ', 6 '-isoLD1 on malignant gliomas
  • 2013
  • In: Mabs. - : Informa UK Limited. - 1942-0862 .- 1942-0870. ; 5:5, s. 748-762
  • Journal article (peer-reviewed)abstract
    • About 60 percent of glioblastomas highly express the gangliosides 3-isoLM1 and 3,6-isoLD1 on the cell surface, providing ideal targets for brain tumor immunotherapy. A novel recombinant immunotoxin, DmAb14m-(scFv)-PE38KDEL (DmAb14m-IT), specific for the gangliosides 3-isoLM1 and 3,6-isoLD1, was constructed with improved affinity and increased cytotoxicity for immunotherapeutic targeting of glioblastoma. We isolated an scFv parental clone from a previously established murine hybridoma, DmAb14, that is specific to both 3-isoLM1 and 3,6-isoLD1. We then performed in vitro affinity maturation by CDR hotspot random mutagenesis. The binding affinity and specificity of affinity-matured DmAb14m-IT were measured by surface-plasmon resonance, flow cytometry, and immunohistochemical analysis. In vitro cytotoxicity of DmAb14m-IT was measured by protein synthesis inhibition and cell death assays in human cell lines expressing gangliosides 3-isoLM1 and 3,6-isoLD1 (D54MG and D336MG) and xenograft-derived cells (D2224MG). As a result, the K-D of DmAb14m-IT for gangliosides 3-isoLM1 and 3,6-isoLD1 was 2.6 x 10(-9)M. Also, DmAb14m-IT showed a significantly higher internalization rate in cells expressing 3-isoLM1 and 3,6-isoLD1. The DmAb14m-IT IC50 was 80 ng/mL (1194 pM) on the D54MG cell line, 5 ng/ml (75 pM) on the D336MG cell line, and 0.5 ng/ml (7.5 pM) on the D2224MG xenograft-derived cells. There was no cytotoxicity on ganglioside-negative HEK293 cells. Immunohistochemical analysis confirmed the specific apparent affinity of DmAb14m-IT with 3-isoLM1 and 3,6-isoLD1. In conclusion, DmAb14m-IT showed specific binding affinity, a significantly high internalization rate, and selective cytotoxicity on glioma cell lines and xenograft-derived cells expressing 3-isoLM1 and 3,6-isoLD1, thereby displaying robust therapeutic potential for testing the antitumor efficacy of DmAb14m-IT at the preclinical level and eventually in the clinical setting.
  •  
18.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view