SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pie Juan) "

Sökning: WFRF:(Pie Juan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Concepcion Gil-Rodriguez, Maria, et al. (författare)
  • De Novo Heterozygous Mutations in SMC3 Cause a Range of Cornelia de Lange Syndrome-Overlapping Phenotypes
  • 2015
  • Ingår i: Human Mutation. - : Wiley: 12 months. - 1059-7794 .- 1098-1004. ; 36:4, s. 454-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for approximate to 1%-2% of CdLS-like phenotypes.
  •  
2.
  • Krab, Lianne C., et al. (författare)
  • Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
  • 2020
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 139:5, s. 575-592
  • Tidskriftsartikel (refereegranskat)abstract
    • RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
  •  
3.
  • Madrigal, Irene, et al. (författare)
  • Efficient application of next-generation sequencing for the diagnosis of rare genetic syndromes
  • 2014
  • Ingår i: Journal of Clinical Pathology. - : BMJ. - 0021-9746 .- 1472-4146. ; 67:12, s. 1099-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The causes of intellectual disability, which affects 1%-3% of the general population, are highly heterogeneous and the genetic defect remains unknown in around 40% of patients. The application of next-generation sequencing is changing the nature of biomedical diagnosis. This technology has quickly become the method of choice for searching for pathogenic mutations in rare uncharacterised genetic diseases. Methods Whole-exome sequencing was applied to a series of families affected with intellectual disability in order to identify variants underlying disease phenotypes. Results We present data of three families in which we identified the disease-causing mutations and which benefited from receiving a clinical diagnosis: Cornelia de Lange, Cohen syndrome and Dent-2 disease. The genetic heterogeneity and the variability in clinical presentation of these disorders could explain why these patients are difficult to diagnose. Conclusions The accessibility to next-generation sequencing allows clinicians to save much time and cost in identifying the aetiology of rare diseases. The presented cases are excellent examples that demonstrate the efficacy of next-generation sequencing in rare disease diagnosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy