SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pierce R) "

Sökning: WFRF:(Pierce R)

  • Resultat 1-50 av 71
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Abe, O, et al. (författare)
  • Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials
  • 2005
  • Ingår i: The Lancet. - 1474-547X. ; 365:9472, s. 1687-1717
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Quinquennial overviews (1985-2000) of the randomised trials in early breast cancer have assessed the 5-year and 10-year effects of various systemic adjuvant therapies on breast cancer recurrence and survival. Here, we report the 10-year and 15-year effects. Methods Collaborative meta-analyses were undertaken of 194 unconfounded randomised trials of adjuvant chemotherapy or hormonal therapy that began by 1995. Many trials involved CMF (cyclophosphamide, methotrexate, fluorouracil), anthracycline-based combinations such as FAC (fluorouracil, doxombicin, cyclophosphamide) or FEC (fluorouracil, epirubicin, cyclophosphamide), tamoxifen, or ovarian suppression: none involved taxanes, trastuzumab, raloxifene, or modem aromatase inhibitors. Findings Allocation to about 6 months of anthracycline-based polychemotherapy (eg, with FAC or FEC) reduces the annual breast cancer death rate by about 38% (SE 5) for women younger than 50 years of age when diagnosed and by about 20% (SE 4) for those of age 50-69 years when diagnosed, largely irrespective of the use of tamoxifen and of oestrogen receptor (ER) status, nodal status, or other tumour characteristics. Such regimens are significantly (2p=0 . 0001 for recurrence, 2p<0 . 00001 for breast cancer mortality) more effective than CMF chemotherapy. Few women of age 70 years or older entered these chemotherapy trials. For ER-positive disease only, allocation to about 5 years of adjuvant tamoxifen reduces the annual breast cancer death rate by 31% (SE 3), largely irrespective of the use of chemotherapy and of age (<50, 50-69, &GE; 70 years), progesterone receptor status, or other tumour characteristics. 5 years is significantly (2p<0 . 00001 for recurrence, 2p=0 . 01 for breast cancer mortality) more effective than just 1-2 years of tamoxifen. For ER-positive tumours, the annual breast cancer mortality rates are similar during years 0-4 and 5-14, as are the proportional reductions in them by 5 years of tamoxifen, so the cumulative reduction in mortality is more than twice as big at 15 years as at 5 years after diagnosis. These results combine six meta-analyses: anthracycline-based versus no chemotherapy (8000 women); CMF-based versus no chemotherapy (14 000); anthracycline-based versus CMF-based chemotherapy (14 000); about 5 years of tamoxifen versus none (15 000); about 1-2 years of tamoxifen versus none (33 000); and about 5 years versus 1-2 years of tamoxifen (18 000). Finally, allocation to ovarian ablation or suppression (8000 women) also significantly reduces breast cancer mortality, but appears to do so only in the absence of other systemic treatments. For middle-aged women with ER-positive disease (the commonest type of breast cancer), the breast cancer mortality rate throughout the next 15 years would be approximately halved by 6 months of anthracycline-based chemotherapy (with a combination such as FAC or FEC) followed by 5 years of adjuvant tamoxifen. For, if mortality reductions of 38% (age <50 years) and 20% (age 50-69 years) from such chemotherapy were followed by a further reduction of 31% from tamoxifen in the risks that remain, the final mortality reductions would be 57% and 45%, respectively (and, the trial results could well have been somewhat stronger if there had been full compliance with the allocated treatments). Overall survival would be comparably improved, since these treatments have relatively small effects on mortality from the aggregate of all other causes. Interpretation Some of the widely practicable adjuvant drug treatments that were being tested in the 1980s, which substantially reduced 5-year recurrence rates (but had somewhat less effect on 5-year mortality rates), also substantially reduce 15-year mortality rates. Further improvements in long-term survival could well be available from newer drugs, or better use of older drugs.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
15.
  •  
16.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
17.
  •  
18.
  •  
19.
  • Bethlehem, RAI, et al. (författare)
  • Brain charts for the human lifespan
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:79057906, s. 525-
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
24.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Power, M. J., et al. (författare)
  • Changes in fire regimes since the Last Glacial Maximum : an assessment based on a global synthesis and analysis of charcoal data
  • 2008
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 30:7-8, s. 887-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
  •  
29.
  • Croft, B., et al. (författare)
  • Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5Wm(-2) pan-Arctic-mean cooling), exceeding -1Wm(-2) near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
  •  
30.
  •  
31.
  • Porcu, E, et al. (författare)
  • Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3300-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene–trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.
  •  
32.
  •  
33.
  •  
34.
  • Bowden, John A., et al. (författare)
  • Harmonizing lipidomics : NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma
  • 2017
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 58:12, s. 2275-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra-and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium.jlr While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
  •  
35.
  •  
36.
  • Darby, S, et al. (författare)
  • Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death : meta-analysis of individual patient data for 10,801 women in 17 randomised trials
  • 2011
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 378:9804, s. 16-1707
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: After breast-conserving surgery, radiotherapy reduces recurrence and breast cancer death, but it may do so more for some groups of women than for others. We describe the absolute magnitude of these reductions according to various prognostic and other patient characteristics, and relate the absolute reduction in 15-year risk of breast cancer death to the absolute reduction in 10-year recurrence risk.METHODS: We undertook a meta-analysis of individual patient data for 10,801 women in 17 randomised trials of radiotherapy versus no radiotherapy after breast-conserving surgery, 8337 of whom had pathologically confirmed node-negative (pN0) or node-positive (pN+) disease.FINDINGS: Overall, radiotherapy reduced the 10-year risk of any (ie, locoregional or distant) first recurrence from 35·0% to 19·3% (absolute reduction 15·7%, 95% CI 13·7-17·7, 2p<0·00001) and reduced the 15-year risk of breast cancer death from 25·2% to 21·4% (absolute reduction 3·8%, 1·6-6·0, 2p=0·00005). In women with pN0 disease (n=7287), radiotherapy reduced these risks from 31·0% to 15·6% (absolute recurrence reduction 15·4%, 13·2-17·6, 2p<0·00001) and from 20·5% to 17·2% (absolute mortality reduction 3·3%, 0·8-5·8, 2p=0·005), respectively. In these women with pN0 disease, the absolute recurrence reduction varied according to age, grade, oestrogen-receptor status, tamoxifen use, and extent of surgery, and these characteristics were used to predict large (≥20%), intermediate (10-19%), or lower (<10%) absolute reductions in the 10-year recurrence risk. Absolute reductions in 15-year risk of breast cancer death in these three prediction categories were 7·8% (95% CI 3·1-12·5), 1·1% (-2·0 to 4·2), and 0·1% (-7·5 to 7·7) respectively (trend in absolute mortality reduction 2p=0·03). In the few women with pN+ disease (n=1050), radiotherapy reduced the 10-year recurrence risk from 63·7% to 42·5% (absolute reduction 21·2%, 95% CI 14·5-27·9, 2p<0·00001) and the 15-year risk of breast cancer death from 51·3% to 42·8% (absolute reduction 8·5%, 1·8-15·2, 2p=0·01). Overall, about one breast cancer death was avoided by year 15 for every four recurrences avoided by year 10, and the mortality reduction did not differ significantly from this overall relationship in any of the three prediction categories for pN0 disease or for pN+ disease.INTERPRETATION: After breast-conserving surgery, radiotherapy to the conserved breast halves the rate at which the disease recurs and reduces the breast cancer death rate by about a sixth. These proportional benefits vary little between different groups of women. By contrast, the absolute benefits from radiotherapy vary substantially according to the characteristics of the patient and they can be predicted at the time when treatment decisions need to be made.FUNDING: Cancer Research UK, British Heart Foundation, and UK Medical Research Council.
  •  
37.
  • Morgan, L. A., et al. (författare)
  • The dynamic floor of Yellowstone Lake, Wyoming, USA : The last 14 k.y. of hydrothermal explosions, venting, doming, and faulting
  • 2023
  • Ingår i: Bulletin of the Geological Society of America. - 0016-7606. ; 135:3-4, s. 547-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits. New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the >1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ~1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion.
  •  
38.
  • D'Andrea, S. D., et al. (författare)
  • Understanding global secondary organic aerosol amount and size-resolved condensational behavior
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:22, s. 11519-11534
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer (BL). However, there are three recent developments regarding the condensation of SOA that lead to uncertainties in the contribution of SOA to particle growth and CCN concentrations: (1) while many global models contain only biogenic sources of SOA (with annual production rates generally 10-30 Tg yr(-1)), recent studies have shown that an additional source of SOA around 100 Tg yr(-1) correlated with anthropogenic carbon monoxide (CO) emissions may be required to match measurements. (2) Many models treat SOA solely as semi-volatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show nucleation mode growth can be captured only if it is assumed that a significant fraction of SOA condenses proportional to the Fuchs-corrected aerosol surface area. This suggests a very low volatility of the condensing vapors. (3) Other recent studies of particle growth show that SOA con-densation at sizes smaller than 10 nm and that size-dependent growth rate parameterizations (GRP) are needed to match measurements. We explore the significance of these three findings using GEOS-Chem-TOMAS global aerosol microphysics model and observations of aerosol size distributions around the globe. The change in the concentration of particles of size D-p > 40 nm (N40) within the BL assuming surface-area condensation compared to mass-distribution net condensation yielded a global increase of 11% but exceeded 100% in biogenically active regions. The percent change in N40 within the BL with the inclusion of the additional 100 Tg SOAyr(-1) compared to the base simulation solely with biogenic SOA emissions (19 Tg yr-1) both using surface area condensation yielded a global increase of 13.7 %, but exceeded 50% in regions with large CO emissions. The inclusion of two different GRPs in the additional-SOA case both yielded a global increase in N40 of < 1 %, however exceeded 5% in some locations in the most extreme case. All of the model simulations were compared to measured data obtained from diverse locations around the globe and the results confirmed a decrease in the model-measurement bias and improved slope for comparing modeled to measured CCN number concentration when non-volatile SOA was assumed and the extra SOA was included.
  •  
39.
  •  
40.
  • Riipinen, Ilona, et al. (författare)
  • The contribution of organics to atmospheric nanoparticle growth
  • 2012
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 5:7, s. 453-458
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols have a strong, yet poorly quantified, effect on climate. The growth of the smallest atmospheric particles from diameters in the nanometre range to sizes at which they may act as seeds for cloud droplets is a key step linking aerosols to clouds and climate. In many environments, atmospheric nanoparticles grow by taking up organic compounds that are derived from biogenic hydrocarbon emissions. Several mechanisms may control this uptake. Condensation of low-volatility vapours and formation of organic salts probably dominate the very first steps of growth in particles close to 1 nm in diameter. As the particles grow further, formation of organic polymers and effects related to the phase of the particle probably become increasingly important. We suggest that dependence of particle growth mechanisms on particle size needs to be investigated more systematically.
  •  
41.
  • Rikard, S. M., et al. (författare)
  • Multiple computational modeling approaches for prediction of wound healing dynamics following pharmacologic intervention
  • 2017
  • Ingår i: Biomedical Engineering Society (BMES) annual meeting, Phoenix, AZ, USA, 11-14 October 2017.
  • Konferensbidrag (refereegranskat)abstract
    • Diabetic wounds are known to have a delayed course of wound healing. We have recently demonstrated that injection of a synthetic modified RNA (modRNA) that enhances VEGF-A protein expression accelerates healing of full-thickness cutaneous wounds in db/db diabetic mice. Here, we compare two different computational modeling approaches to explore how the dosing amount and time course affect the rate of wound healing. We show that a partial differential equation (PDE) model is appropriate for questions concerning spatial resolution of healing throughout the wound, while a nonlinear mixed effect model (NLME) is more appropriate for capturing population level variations in healing rate when dealing with a sparse data set. Both models display sensitivity to varying dosing amount and timing.
  •  
42.
  • Shrivastava, Manish, et al. (författare)
  • Recent advances in understanding secondary organic aerosol : Implications for global climate forcing
  • 2017
  • Ingår i: Reviews of Geophysics. - 8755-1209. ; 55:2, s. 509-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
  •  
43.
  • Valencia-Montoya, Wendy A., et al. (författare)
  • Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae)
  • 2021
  • Ingår i: Proceedings of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2954 .- 0962-8452. ; 288:1950
  • Tidskriftsartikel (refereegranskat)abstract
    • Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.
  •  
44.
  •  
45.
  • Wang, T, et al. (författare)
  • Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4932-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case–control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E−06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E−07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype–genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
  •  
46.
  •  
47.
  • Croft, Betty, et al. (författare)
  • Processes controlling the annual cycle of Arctic aerosol number and size distributions
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:6, s. 3665-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.
  •  
48.
  • D’Andrea, S. D. D., et al. (författare)
  • Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15, s. 2247-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.
  •  
49.
  • D'Andrea, S. D., et al. (författare)
  • Effect of Secondary Organic Aerosol Amount and Condensational Behavior on Global Aerosol Size Distributions
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 667-670
  • Konferensbidrag (refereegranskat)abstract
    • Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer. Many models treat SOA solely as semivolatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show that a significant fraction of SOA condenses proportional to the aerosol surface area, which suggests a very low volatility. Additionally, while many global models contain only biogenic sources of SOA (with emissions generally 10-30 Tg yr(-1)), recent studies have shown a need for an additional source of SOA around 100 Tg yr(-1) correlated with anthropogenic carbon monoxide (CO) emissions is required to match measurements. Here, we explore the significance of these two findings using the GEOS-Chem-TOMAS global aerosol microphysics model. The percent change in the number of particles of size D-p > 40 nm (N40) within the continental boundary layer between the surface-area-and mass-distribution condensation schemes, both with the base biogenic SOA only, yielded a global increase of 8% but exceeds 100% in biogenically active regions. The percent change in N40 within the continental boundary layer between the base simulation (19 Tg yr(-1)) and the additional SOA (100 Tg yr(-1)) both using the surface area condensation scheme (very low volatility) yielded a global increase of 14%, and a global decrease in the number of particles of size D-p > 10 nm (N10) of 32%. These model simulations were compared to measured data from Hyytiala, Finland and other global locations and confirmed a decrease in the model-measurement bias. Thus, treating SOA as very low volatile as well as including additional SOA correlated with anthropogenic CO emissions causes a significant global increase in the number of climatically relevant sized particles, and therefore we must continue to refine our SOA treatments in aerosol microphysics models.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 71

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy