SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pietrzak B.) "

Search: WFRF:(Pietrzak B.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
3.
  • Kuschmierz, Paul, et al. (author)
  • European first-year university students accept evolution but lack substantial knowledge about it : A standardized European cross-country assessment
  • 2021
  • In: Evolution. - : BioMed Central (BMC). - 1936-6426 .- 1936-6434. ; 14:1, s. 1-22
  • Journal article (peer-reviewed)abstract
    • Background: Investigations of evolution knowledge and acceptance and their relation are central to evolution education research. Ambiguous results in this field of study demonstrate a variety of measuring issues, for instance differently theorized constructs, or a lack of standardized methods, especially for cross-country comparisons. In particular, meaningful comparisons across European countries, with their varying cultural backgrounds and education systems, are rare, often include only few countries, and lack standardization. To address these deficits, we conducted a standardized European survey, on 9200 first-year university students in 26 European countries utilizing a validated, comprehensive questionnaire, the “Evolution Education Questionnaire”, to assess evolution acceptance and knowledge, as well as influencing factors on evolution acceptance. Results: We found that, despite European countries’ different cultural backgrounds and education systems, European first-year university students generally accept evolution. At the same time, they lack substantial knowledge about it, even if they are enrolled in a biology-related study program. Additionally, we developed a multilevel-model that determines religious faith as the main influencing factor in accepting evolution. According to our model, knowledge about evolution and interest in biological topics also increase acceptance of evolution, but to a much lesser extent than religious faith. The effect of age and sex, as well as the country’s affiliation, students’ denomination, and whether or not a student is enrolled in a biology-related university program, is negligible. Conclusions: Our findings indicate that, despite all their differences, most of the European education systems for upper secondary education lead to acceptance of evolution at least in university students. It appears that, at least in this sample, the differences in knowledge between countries reflect neither the extent to which school curricula cover evolutionary biology nor the percentage of biology-related students in the country samples. Future studies should investigate the role of different European school curricula, identify particularly problematic or underrepresented evolutionary concepts in biology education, and analyze the role of religious faith when teaching evolution.
  •  
4.
  •  
5.
  •  
6.
  • Zakrzewska, A., et al. (author)
  • Substituent effects on the photophysical properties of fluorescent 2-benzoylmethylenequinoline difluoroboranes : A combined experimental and quantum chemical study Dedication: This publication is dedicated to the memory of Prof. Jerzy Pa̧czkowski.
  • 2013
  • In: Dyes and pigments. - : Elsevier BV. - 0143-7208 .- 1873-3743. ; 99:3, s. 957-965
  • Journal article (peer-reviewed)abstract
    • In this study, we demonstrate a successful synergy between theory and experiment and report on the photophysical properties of a recently synthesized series of substituted 2-benzoylmethylenequinoline difluoroboranes with a view towards the effect of substitution on their properties. In general difluoroboranes are known to have a bright fluorescence but for some analogs the properties are not fully understood. Quantum chemistry methods have been applied in order to explain a complex structure of the absorption and emission spectra and to gain an insight into the charge redistribution upon the excitation of the investigated molecules. We demonstrate that the spectra of this important class of compounds can be satisfactorily simulated using quantum chemistry methods. In particular, the absorption and emission band structure was resolved and the spectral features were assigned to C-H wagging and skeletal vibrations of the polycyclic core.
  •  
7.
  • Lundgren, Birgit, et al. (author)
  • Taste discrimination vs hedonic response to sucrose in coffee beverage. : An interlaboratory study
  • 1978
  • In: Chemical Senses. - : Oxford University Press (OUP). - 0379-864X .- 1464-3553. ; 3:3, s. 249-265
  • Journal article (peer-reviewed)abstract
    • Degree of liking, using a 17-point hedonic scale, and discrimination taste thresholds, using a paired-comparison technique, were determined in a coffee beverage containing 0, 2.5, 5.0, 7.5, and 10.0% sucrose at laboratories in Brazil, Japan, Poland, Sweden and USA. Hedonic responses from the 122 subjects were subdivided into four distinct sub-groups, according to different patterns as a function of sucrose concentration. Different frequencies of these hedonic patterns resulted from the five laboratories. With few exceptions, repeated hedonic testing at the termination of the experiment matched those from the beginning, indicating stability of response during the lengthy study. No differences were observed in hedonic responses (nor in discrimination ability) between the male and female subjects at each laboratory.Discrimination thresholds at the five standard sucrose concentrations, and corresponding Weber ratios, were reported for the pooled data within each laboratory. In general, the Weber ratios were higher at the lower concentrations, indicating dependence of discrimination upon the standard concentration. Notable differences in discrimination ability were evident among the five laboratories, but were unrelated to degree of liking for sweetness in the coffee. Subjects with low or with high degree of liking for all coffee samples, as well as those with increasing or decreasing hedonic responses as a function of sucrose concentration, discriminated equally well among the concentration levels. The data from all laboratories showed that ability to discriminate among sucrose levels and degree of liking for sucrose levels in coffee are independent behavioral responses. © 1978 Information Retrieval Limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view