SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pilia Martino) "

Sökning: WFRF:(Pilia Martino)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekström, Simon, 1991-, et al. (författare)
  • Faster dense deformable image registration by utilizing both CPU and GPU
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: Image registration is an important aspect of medical image analysis and a key component in many analysis concepts. Applications include fusion of multimodal images, multi-atlas segmentation, and whole-body analysis. Deformable image registration is often computationally expensive, and the need for efficient registration methods is highlighted by the emergence of large-scale image databases, e.g., the UK Biobank, providing imaging from 100 000 participants.Approach: We present a heterogeneous computing approach, utilizing both the CPU and the GPU, to accelerate a previously proposed image registration method. The parallelizable task of computing the matching criterion is offloaded to the GPU, where it can be computed efficiently, while the more complex optimization task is performed on the CPU. To lessen the impact of data synchronization between the CPU and GPU we propose a pipeline model, effectively overlapping computational tasks with data synchronization. The performance is evaluated on a brain labeling task and compared with a CPU implementation of the same method and the popular Advanced Normalization Tools (ANTs) software.Results: The proposed method presents a speed-up by a factor of 4 and 8 against the CPU implementation and the ANTs software respectively. A significant improvement in labeling quality was also observed, with measured mean Dice overlaps of 0.712 and 0.701 for our method and ANTs respectively.Conclusions: We showed that the proposed method compares favorably to the ANTs software yielding both a significant speed-up and an improvement in labeling quality. The registration method together with the proposed parallelization strategy is implemented as an open-source software package, deform.
  •  
2.
  • Ekström, Simon, 1991-, et al. (författare)
  • Faster dense deformable image registration by utilizing both CPU and GPU
  • 2021
  • Ingår i: Journal of Medical Imaging. - 2329-4302 .- 2329-4310. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Image registration is an important aspect of medical image analysis and a key component in many analysis concepts. Applications include fusion of multimodal images, multi-atlas segmentation, and whole-body analysis. Deformable image registration is often computationally expensive, and the need for efficient registration methods is highlighted by the emergence of large-scale image databases, e.g., the UK Biobank, providing imaging from 100,000 participants. Approach: We present a heterogeneous computing approach, utilizing both the CPU and the graphics processing unit (GPU), to accelerate a previously proposed image registration method. The parallelizable task of computing the matching criterion is offloaded to the GPU, where it can be computed efficiently, while the more complex optimization task is performed on the CPU. To lessen the impact of data synchronization between the CPU and GPU, we propose a pipeline model, effectively overlapping computational tasks with data synchronization. The performance is evaluated on a brain labeling task and compared with a CPU implementation of the same method and the popular advanced normalization tools (ANTs) software. Results: The proposed method presents a speed-up by factors of 4 and 8 against the CPU implementation and the ANTs software, respectively. A significant improvement in labeling quality was also observed, with measured mean Dice overlaps of 0.712 and 0.701 for our method and ANTs, respectively. Conclusions: We showed that the proposed method compares favorably to the ANTs software yielding both a significant speed-up and an improvement in labeling quality. The registration method together with the proposed parallelization strategy is implemented as an open-source software package, deform.
  •  
3.
  • Pilia, Martino, et al. (författare)
  • Average volume reference space for large scale registration of whole-body magnetic resonance images
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectivesThe construction of whole-body magnetic resonance (MR) imaging atlases allows to perform statistical analysis with applications in anomaly detection, longitudinal, and correlation studies. Atlas-based methods require a common coordinate system to which all the subjects are mapped through image registration. Optimisation of the reference space is an important aspect that affects the subsequent analysis of the registered data, and having a reference space that is neutral with respect to local tissue volume is valuable in correlation studies. The purpose of this work is to generate a reference space for whole-body imaging that has zero voxel-wise average volume change when mapped to a cohort.MethodsThis work proposes an approach to register multiple whole-body images to a common template using volume changes to generate a synthetic reference space, starting with an initial reference and refining it by warping it with a deformation that brings the voxel-wise average volume change associated to the mappings of all the images in the cohort to zero.ResultsExperiments on fat/water separated whole-body MR images show how the method effectively generates a reference space neutral with respect to volume changes, without reducing the quality of the registration nor introducing artefacts in the anatomy, while providing better alignment when compared to an implicit reference groupwise approach.ConclusionsThe proposed method allows to quickly generate a reference space neutral with respect to local volume changes, that retains the registration quality of a sharp template, and that can be used for statistical analysis of voxel-wise correlations in large datasets of whole-body image data.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy