SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pilkington Georgia) "

Sökning: WFRF:(Pilkington Georgia)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergendal, Erik, et al. (författare)
  • 3D texturing of the air–water interface by biomimetic self-assembly
  • 2020
  • Ingår i: Nanoscale Horizons. - 2055-6764 .- 2055-6756. ; :5, s. 839-846
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple, insoluble monolayer of fatty acid is shown to induce 3D nanotexturing of the air–water interface. This advance has been achieved through the study of monolayers of a methyl-branched long chain fatty acid, analogous to those found on the surface of hair and wool, directly at the air–water interface. Specular neutron reflectometry combined with AFM probing of deposited monolayers shows pronounced 3D surface domains, which are absent for unbranched analogues and are attributed to hydrocarbon packing constraints. The resulting surface topographies of the water far exceed the height perturbation that can be explained by the presence of capillary waves of a free liquid surface. These have hitherto been considered the only source of perturbation of the flatness of a planar water interface under gravity in the absence of topographical features from the presence of extended, globular or particulate matter. This amounts to a paradigm shift in the study of interfacial films and opens the possibility of 3D texturing of the air–water interface.
  •  
2.
  • Bergendal, Erik, et al. (författare)
  • Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 13:1, s. 371-379
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure
  •  
3.
  •  
4.
  •  
5.
  • Campos Pacheco, Jesús Enrique, et al. (författare)
  • Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis
  • 2024
  • Ingår i: Journal of Controlled Release. - : Elsevier B.V.. - 0168-3659 .- 1873-4995. ; 369, s. 231-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 μm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 μm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9–10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.
  •  
6.
  •  
7.
  • Li, Sichao, et al. (författare)
  • Anion architecture controls structure and electroresponsivity of anhalogenous ionic liquids in a sustainable fluid
  • 2024
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 128:17, s. 4231-4242
  • Tidskriftsartikel (refereegranskat)abstract
    • Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]−), bis(oxalato)borate ([BOB]−), and bis(salicylato)borate ([BScB]−). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.
  •  
8.
  • Li, Sichao, et al. (författare)
  • Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid
  • 2024
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society. - 1520-6106 .- 1520-5207. ; 128:17, s. 4231-4242
  • Tidskriftsartikel (refereegranskat)abstract
    • Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]−), bis(oxalato)borate ([BOB]−), and bis(salicylato)borate ([BScB]−). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.
  •  
9.
  • Li, Sichao, et al. (författare)
  • Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid
  • 2024
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society. - 1520-6106 .- 1520-5207. ; 128:17, s. 4231-4242
  • Tidskriftsartikel (refereegranskat)abstract
    • Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]−), bis(oxalato)borate ([BOB]−), and bis(salicylato)borate ([BScB]−). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors. 
  •  
10.
  •  
11.
  • Li, Sichao, et al. (författare)
  • Tuneable interphase transitions in ionic liquid/carrier systems via voltage control
  • 2023
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 652, s. 1240-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure and interaction of ionic liquids (ILs) influence their interfacial composition, and their arrangement (i.e., electric double-layer (EDL) structure), can be controlled by an electric field. Here, we employed a quartz crystal microbalance (QCM) to study the electrical response of two non-halogenated phosphonium orthoborate ILs, dissolved in a polar solvent at the interface. The response is influenced by the applied voltage, the structure of the ions, and the solvent polarizability. One IL showed anomalous electro-responsivity, suggesting a self-assembly bilayer structure of the IL cation at the gold interface, which transitions to a typical EDL structure at higher positive potential. Neutron reflectivity (NR) confirmed this interfacial structuring and compositional changes at the electrified gold surface. A cation-dominated self-assembly structure is observed for negative and neutral voltages, which abruptly transitions to an anion-rich interfacial layer at positive voltages. An interphase transition explains the electro-responsive behaviour of self-assembling IL/carrier systems, pertinent for ILs in advanced tribological and electrochemical contexts.
  •  
12.
  • Pilkington, Georgia A., et al. (författare)
  • Amontonian frictional behaviour of nanostructured surfaces
  • 2011
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 13, s. 9318-9326
  • Tidskriftsartikel (refereegranskat)abstract
    • With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (Ra) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ0 + μg, with the intrinsic friction coefficient μ0 accounting for the chemical nature of the surfaces and the geometric friction coefficient μg for the presence of nanotextures. We have found a possible correlation between μg and the average local slope of the surface nanotextures.
  •  
13.
  • Pilkington, Georgia A., et al. (författare)
  • Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 148:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.
  •  
14.
  • Pilkington, Georgia, et al. (författare)
  • Effect of water on the electroresponsive structuring and friction in dilute and concentrated ionic liquid lubricant mixtures
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:48, s. 28191-28201
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.
  •  
15.
  • Pilkington, Georgia, et al. (författare)
  • Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent : effect of concentration
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:34, s. 19162-19171
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% weight/weight), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% weight/weight), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary at. force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed Together such results provide valuable mol. insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviors.
  •  
16.
  • Quignon, Benoit, et al. (författare)
  • Sustained Frictional Instabilities on Nanodomed Surfaces : Stick Slip Amplitude Coefficient
  • 2013
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 7:12, s. 10850-10862
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modem minlaturized devices. In this work, lateral force microscopy was used to study the frictional properties between AFM nanotip and surfaces bearing well-defined ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic properties and their measured friction coeffidents was identified. Furthermore, all the nanodomed textures exhibited pronounced osdllations in the shear traces, similar to the dassic stick slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick slip oscillations, ab was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick slip amplitude coeffident (SSAC). We suggest that such stick slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., a, and SSAQ are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices.
  •  
17.
  • Radiom, Milad, et al. (författare)
  • Anomalous Interfacial Structuring of a Non-Halogenated Ionic Liquid : Effect of Substrate and Temperature
  • 2018
  • Ingår i: Colloids and Interfaces. - : MDPI. - 2504-5377. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the interfacial properties of the non-halogenated ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis(mandelato)borate, [P6,6,6,14][BMB], in proximity to solid surfaces, by means of surface force measurement. The system consists of sharp atomic force microscopy (AFM) tips interacting with solid surfaces of mica, silica, and gold. We find that the force response has a monotonic form, from which a characteristic steric decay length can be extracted. The decay length is comparable with the size of the ions, suggesting that a layer is formed on the surface, but that it is diffuse. The long alkyl chains of the cation, the large size of the anion, as well as crowding of the cations at the surface of negatively charged mica, are all factors which are likely to oppose the interfacial stratification which has, hitherto, been considered a characteristic of ionic liquids. The variation in the decay length also reveals differences in the layer composition at different surfaces, which can be related to their surface charge. This, in turn, allows the conclusion that silica has a low surface charge in this aprotic ionic liquid. Furthermore, the effect of temperature has been investigated. Elevating the temperature to 40 °C causes negligible changes in the interaction. At 80 °C and 120 °C, we observe a layering artefact which precludes further analysis, and we present the underlying instrumental origin of this rather universal artefact.
  •  
18.
  • Reddy, Akepati Bhaskar, et al. (författare)
  • Micro- To Nano- To from Surface to Bulk : Influence of Halogen-Free Ionic Liquid Architecture and Dissociation on Green Oil Lubricity
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society. - 2168-0485. ; 9:40, s. 13606-13617
  • Tidskriftsartikel (refereegranskat)abstract
    • Four nonhalogenated ionic liquids (ILs) based on the same phosphonium cation are investigated in terms of the anion suitability for enhancing the lubricity of a biodegradable oil. For all test conditions, typical for industrial machine components, the lubrication is shown to be governed by nonsacrificial films formed by the physisorption of ionic species on the tribo-surfaces. The anionic structure appears to have an important role in the formation of friction modifying films. The orthoborate ILs exhibit the formation of robust ionic boundary films, resulting in reduced friction and better wear protection. On the contrary, the surface adsorption of phosphinate and phosphate ILs appears to antagonistically disrupt the intrinsic lubrication properties of the biodegradable oil, resulting in high friction and wear. Through additional investigations, it is postulated that the higher dissociation of orthoborate ILs in the biodegradable oil allows the formation of hierarchical and electrostatically overscreened layer structures with long-range order, whereas the ILs with phosphate and phosphinate anions exhibit low dissociation in biodegradable oil, possibly due to the ion pairs being surrounded by a hydrocarbon halo, which presumably results in weak adsorption to form a mixed interfacial layer with no long-range order. © 2021 The Authors. 
  •  
19.
  • Reddy, Akepati Bhaskar, et al. (författare)
  • Tribotronic control of an ionic boundary layer in operando extends the limits of lubrication
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of electric potential on the lubrication of a non-halogenated phosphonium orthoborate ionic liquid used as an additive in a biodegradable oil was studied. An in-house tribotronic system was built around an instrument designed to measure lubricant film thickness between a rolling steel ball and a rotating silica-coated glass disc. The application of an electric field between the steel ball and a set of customized counter-electrodes clearly induced changes in the thickness of the lubricant film: a marked decrease at negative potentials and an increase at positive potentials. Complementary neutron reflectivity studies demonstrated the intrinsic electroresponsivity of the adsorbate: this was performed on a gold-coated silicon block and made possible in the same lubricant system by deuterating the oil. The results indicate that the anions, acting as anchors for the adsorbed film on the steel surface, are instrumental in the formation of thick and robust lubricating ionic boundary films. The application of a high positive potential, outside the electrochemical window, resulted in an enormous boost to film thickness, implicating the formation of ionic multi-layers and demonstrating the plausibility of remote control of failing contacts in inaccessible machinery, such as offshore wind and wave power installations.
  •  
20.
  •  
21.
  • Rocío Hernández, Aura, et al. (författare)
  • Disordered mesoporous silica particles : an emerging platform to deliver proteins to the lungs.
  • 2024
  • Ingår i: Drug Delivery. - : Taylor & Francis. - 1071-7544 .- 1521-0464. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71–91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.
  •  
22.
  • Taylor, Nicholas M., et al. (författare)
  • Surface forces and friction between Langmuir-Blodgett polymer layers in a nonpolar solvent
  • 2024
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 653, s. 1432-1443
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimization of boundary lubrication by tuning the confined molecular structures formed by surface-active additives such as surfactants and polymers is of key importance to improving energy efficiency in mechanical processes. Here, using the surface forces apparatus (SFA), we have directly measured the normal and shear forces between surface layers of a functionalised olefin copolymer (FOCP) in n-dodecane, deposited onto mica using the Langmuir-Blodgett (LB) technique. The FOCP has an olefin backbone decorated with a statistical distribution of polar-aromatic groups, with a structure that we term as "centipede". The effect of lateral confinement, characterised by the surface pressure, Pi(dep), at the air-water interface at which the LB films are transferred, was examined. Normal force profiles revealed that the thickness of the LB films increased significantly with Pi(dep), with the film thickness (t > 20 nm) inferring a multi-layered film structure, consistent with the interfacial characterisation results from synchrotron X-ray reflectivity (XRR) measurements. The coefficient of friction, mu, between the LB films spanned two orders of magnitude from superlubricity (mu similar to 0.002) to much higher friction (mu > 0.1) depending nonlinearly on Pi(dep), with the lowest friction observed at the intermediate Pi(dep). Molecular arrangement upon LB compression leads to the multilayer film with a structure akin to an interfacial gel, with transient crosslinking facilitated by the intra- and inter-molecular interactions between the functional groups. We attribute the differences in frictional behaviour to the different prevalence of the FOCP functional groups at the lubricating interface, which depends sensitively on the degree of compression at the air-water interface prior to the LB deposition. The LB films remain intact after repeated compression (up to pressures of 10 MPa) and shear cycles, indicating strong surface anchorage and structural robustness as a load-bearing and shear-mediating boundary layer. These unprecedented results from the friction measurements between LB films of a statistical copolymer in oil point towards new strategies for tailoring macromolecular architecture for mediating efficient energy dissipation in oil-based tribological applications.
  •  
23.
  • van der Zwaan, Irès, et al. (författare)
  • Influence of particle diameter on aerosolization performance and release of budesonide loaded mesoporous silica particles
  • 2024
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 200
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.
  •  
24.
  •  
25.
  • Watanabe, Seiya, et al. (författare)
  • Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces : effect of alkyl chain length.
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:16, s. 8450-8460
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields. In the case of the latter, there is an increasing demand for the study of non-halogenated ILs, as many fluorinated anions have been found to produce corrosive and toxic halides under tribological conditions. Here, the interfacial structuring of a series of four imidazolium ILs ([CnC1Im]) of varying alkyl chain lengths (n = 5, 6, 7, 10), with a non-halogenated borate-based anion ([BOB]), have been studied at charged interfaces using sum frequency generation (SFG) spectroscopy and neutron reflectivity (NR). For all alkyl chain lengths, the SFG spectra show that the cation imidazolium ring responds to the surface charge by modifying its orientation with respect to the surface normal. In addition, the combination of SFG spectra with electrochemical NR measurements reveals that the longest alkyl chain length (n = 10) forms a bilayer structure at all charged interfaces, independent of the ring orientation. These results demonstrate the tunability of IL interfacial layers through the use of surface charge, as well as effect of the cation alkyl chain length, and provide valuable insight into the charge compensation mechanisms of ILs.
  •  
26.
  • Wolff, Max, et al. (författare)
  • Grazing incidence neutron scattering for the study of solid–liquid interfaces
  • 2023
  • Ingår i: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. - : Elsevier.
  • Bokkapitel (refereegranskat)abstract
    • Neutrons are characterized by a low absorption in many engineering materials. At the same time the scattering cross section of light elements, such as hydrogen and deuterium, may be large. These properties make neutron scattering experiments performed under grazing incidence geometry an excellent tool for the study of solid–liquid interfaces. In this review we describe the basic concepts of neutron reflection and grazing incidence scattering experiments as well as experimental procedures and sample cells. The full power of the method is exemplified on a range of science areas, including polymers, bio- and ionic liquid lubricants, electrolytes as well as bio-membranes or magnetic liquids.
  •  
27.
  • Wolff, Max, et al. (författare)
  • Grazing incidence neutron scattering for the study of solid–liquid interfaces
  • 2023
  • Ingår i: Encyclopedia of Solid-Liquid Interfaces. - : Elsevier. ; , s. 1-1
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Neutrons are characterized by a low absorption in many engineering materials. At the same time the scattering cross section of light elements, such as hydrogen and deuterium, may be large. These properties make neutron scattering experiments performed under grazing incidence geometry an excellent tool for the study of solid–liquid interfaces. In this review we describe the basic concepts of neutron reflection and grazing incidence scattering experiments as well as experimental procedures and sample cells. The full power of the method is exemplified on a range of science areas, including polymers, bio- and ionic liquid lubricants, electrolytes as well as bio-membranes or magnetic liquids.
  •  
28.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (23)
annan publikation (3)
bokkapitel (2)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Pilkington, Georgia (18)
Glavatskih, Sergei (13)
Rutland, Mark W., Pr ... (12)
Pilkington, Georgia ... (10)
Rutland, Mark W (6)
Valetti, Sabrina (6)
visa fler...
Mudring, Anja-Verena (5)
Feiler, Adam (5)
Ekström, Mikael (5)
Hammond, Oliver S. (5)
Campos Pacheco, Jesu ... (5)
Bergendal, Erik (4)
Vorobiev, Alexei (4)
Watanabe, Seiya (3)
Shimpi, Manishkumar ... (3)
Gutfreund, Philipp (3)
Briscoe, Wuge H. (3)
Wolff, Max (2)
Frenning, Göran (2)
Bousrez, Guillaume (2)
Cardenas, Marite (2)
Frielinghaus, Henric ... (2)
Kocherbitov, Vitaly (2)
Falkman, Peter (2)
Ashfold, Michael N R (2)
Welbourn, Rebecca (2)
Campbell, Richard A. (2)
Bogdanova, Ekaterina (2)
Dahint, Reiner (2)
Mattia, Davide (2)
Riaz, Azra (2)
Yalovenko, Tetiana (2)
Kotov, Nikolay (1)
Claesson, Per M. (1)
Gutfreund, P. (1)
Pálsson, Gunnar K. (1)
Adranno, Brando (1)
Renier, Olivier (1)
Godaly, Gabriela (1)
Gustafsson, Anna (1)
Thormann, Esben (1)
Antzutkin, Oleg N. (1)
Johnson, Magnus (1)
Harris, Kathryn L (1)
Müller-Buschbaum, Pe ... (1)
Campbell, R. A. (1)
Müller-Buschbaum, P. (1)
Holt, S. A. (1)
Holt, Stephen A (1)
Bikondoa, Oier (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (20)
RISE (10)
Malmö universitet (6)
Uppsala universitet (4)
Umeå universitet (3)
Luleå tekniska universitet (3)
visa fler...
Stockholms universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Medicin och hälsovetenskap (7)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy