SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pinte P) "

Search: WFRF:(Pinte P)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Keppler, M., et al. (author)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
2.
  •  
3.
  • Cugno, G., et al. (author)
  • A search for accreting young companions embedded in circumstellar disks High-contrast H alpha imaging with VLT/SPHERE
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Context. In recent years, our understanding of giant planet formation progressed substantially. There have even been detections of a few young protoplanet candidates still embedded in the circumstellar disks of their host stars. The exact physics that describes the accretion of material from the circumstellar disk onto the suspected circumplanetary disk and eventually onto the young, forming planet is still an open question.Aims. We seek to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets.Methods. We analyzed observations of six young stars (age 3.5-10 Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the Very Large Telescope (VLT) in the H alpha filter (656 nm) and a nearby continuum filter (644.9 nm). We applied several point spread function (PSF) subtraction techniques to reach the highest possible contrast near the primary star, specifically investigating regions where forming companions were claimed or have been suggested based on observed disk morphology.Results. We redetect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H alpha and the continuum. We derive new astrometry (r = 62.8(-2.7)(+2.1)mas and PA = (98.7 +/- 1.8)degrees) and photometry (Delta N_Ha = 6.3-(+0.2)(0.3) mag, Delta B_Ha = 6.7 +/- 0.2 mag and Delta Cnt_Ha= 7.3(-0.2)(+0.3) mag) for the companion in agreement with previous studies, and estimate its mass accretion rate (M approximate to 1-2 x 10(-10) M-circle dot yr(-1)). A faint point-like source around HD135344 B (SA0206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142, and MWC 758 and calculate that processes involving Ha fluxes larger than similar to 8 x 10(-14)-10(-15) erg s(-1) cm(-2) (M > 10(-10)-10(-12) M-circle dot yr(-1)) can be excluded. Furthermore, flux upper limits of similar to 10(-14)-10(-15)erg s(-1) cm(-2) (M < 10(-11) -10(-12)M(circle dot )yr(-1)) are estimated within the gaps identified in the disks surrounding HD135344 B and TW Hya. The derived luminosity limits exclude H alpha signatures at levels similar to those previously detected for the accreting planet candidate LkCa15 b.
  •  
4.
  • Dent, W. R. F., et al. (author)
  • GASPS-A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
  • 2013
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 125:927, s. 477-505
  • Journal article (peer-reviewed)abstract
    • We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted similar to 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 mu m the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 mu m, [CII] at 157 mu m, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 mu m. Additionally, GASPS included continuum photometry at 70, 100 and 160 mu m, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 mu m was the brightest line seen in almost all objects, by a factor of similar to 10. Overall [OI]63 mu m detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 mu m detection of similar to 10(-5) M-circle dot. Normalising to a distance of 140 pc, 84% of objects with dust masses >= 10(-5) M-circle dot can be detected in this line in the present survey; 32% of those of mass 10(-6)-10(-5) M-circle dot, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were similar to 50%. For each association in the 5-20 Myr age range, similar to 2 stars remain detectable in [OI]63 mu m, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that similar to 18% of stars retain a gas-rich disk of total mass similar to 1 M-Jupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 mu m, [CII]157 mu m and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
  •  
5.
  • Keppler, M., et al. (author)
  • Gap, shadows, spirals, and streamers : SPHERE observations of binary-disk interactions in GG Tauri A
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Journal article (peer-reviewed)abstract
    • Context. A large portion of stars is found to be part of binary or higher-order multiple systems. The ubiquity of planets found around single stars raises the question of whether and how planets in binary systems form. Protoplanetary disks are the birthplaces of planets, and characterizing them is crucial in order to understand the planet formation process.Aims. Our goal is to characterize the morphology of the GG Tau A disk, one of the largest and most massive circumbinary disks. We also aim to trace evidence for binary-disk interactions.Methods. We obtained observations in polarized scattered light of GG Tau A using the SPHERE/IRDIS instrument in the H-band filter. We analyzed the observed disk morphology and substructures. We ran 2D hydrodynamical models to simulate the evolution of the circumbinary ring over the lifetime of the disk.Results. The disk and also the cavity and the inner region are highly structured, with several shadowed regions, spiral structures, and streamer-like filaments. Some of these are detected here for the first time. The streamer-like filaments appear to connect the outer ring with the northern arc. Their azimuthal spacing suggests that they may be generated through periodic perturbations by the binary, which tear off material from the inner edge of the outer disk once during each orbit. By comparing observations to hydrodynamical simulations, we find that the main features, in particular, the gap size, but also the spiral and streamer filaments, can be qualitatively explained by the gravitational interactions of a binary with a semimajor axis of similar to 35 au on an orbit coplanar with the circumbinary ring.
  •  
6.
  • Mathews, G. S., et al. (author)
  • GAS in Protoplanetary Systems (GASPS) I. First results
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L127
  • Journal article (peer-reviewed)abstract
    • Context. Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel Space Observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims. We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods. We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at gimel similar to 60-190 mu m using the Photodetector Array Camera and Spectrometer instrument on the Herschel Space Observatory. Results. We detect [OI] 63 mu m emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 mu m. Extensive models are presented in associated papers.
  •  
7.
  • Meeus, G., et al. (author)
  • Gas in the protoplanetary disc of HD 169142: Herschel's view
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L124
  • Journal article (peer-reviewed)abstract
    • In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 mu m, [CII] 157.7 mu m, CO 72.8 and 90.2 mu m, and o-H2O 78.7 and 179.5 mu m. We only detect the [OI] 63.2 mu m line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and (CO)-C-12/13 data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDIMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 +/- 2.0 x 10(-3) M-circle dot is still present in this disc, in agreement with earlier CO observations.
  •  
8.
  • Olofsson, J., et al. (author)
  • Resolving faint structures in the debris disk around TWA 7 Tentative detections of an outer belt, a spiral arm, and a dusty cloud
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at similar to 0.72 '' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of similar to 13 degrees with a position angle of similar to 91 degrees east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of similar to 1.5 '' (similar to 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11 ''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at similar to 0.2 '' (similar to 7 au) and another belt at 0.72 '' (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M-circle plus planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
  •  
9.
  • Pinte, C., et al. (author)
  • The Herschel view of GAS in Protoplanetary Systems (GASPS) First comparisons with a large grid of models
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L126
  • Journal article (peer-reviewed)abstract
    • The Herschel GASPS key program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages, spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses of the gas and dust properties of protoplanetary discs, we have combined the capabilities of the radiative transfer code MCFOST with the gas thermal balance and chemistry code ProDiMo to compute a grid of approximate to 300 000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in the DENT grid, as well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT grid reveals the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination of Herschel line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, in particular CO lines, is required for a detailed characterisation of the physical and chemical properties of circumstellar discs.
  •  
10.
  • Pohl, A., et al. (author)
  • The Circumstellar Disk HD 169142 : Gas, Dust, and Planets Acting in Concert?
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 850:1
  • Journal article (peer-reviewed)abstract
    • HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (similar to 1.2 mu m) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0 ''.16 (similar to 19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0 ''.18 (similar to 21 au) and 0 ''.56 (similar to 66 au) and marginally detect a faint third gap at 0 ''.70-0 ''.73 (similar to 82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate.
  •  
11.
  • Thi, W. F., et al. (author)
  • Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya Constraining the disk gas mass
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L125
  • Journal article (peer-reviewed)abstract
    • Planets are formed in disks around young stars. With an age of similar to 10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the open-time large program GASPS. We complement this with continuum data and ground-based (12) CO 3-2 and (CO)-C-13 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 mu m. The other lines that were observed, [OI] at 145 mu m and [CII] at 157 mu m, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [(CO)-C-12]/[(CO)-C-13] = 69 suggests a dust mass for grains with radius
  •  
12.
  • Claudi, R., et al. (author)
  • SPHERE dynamical and spectroscopic characterization of HD142527B
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Aims. HD142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (>5 au) orbital separation around young stars. Methods. We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. Results. We detect the accreting low-mass companion HD142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M-J are visible in the field of view of IFS (similar to 100 au centered on the star) or in the IRDIS field of view (similar to 400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 +/- 0.06 M-circle dot and R = 0.15 +/- 0.07 R-circle dot. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26(-0.14)(+0.16) , which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 137 yr; an inclination of i = 121 130 degrees, a value of Omega = 124 135 degrees for the longitude of node, and an 68% confidence interval of similar to 18-57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: similar to 0.2-0.45 and similar to 0.45-0.7 for e, and similar to 2015-2020 and similar to 2020-2022 for T-0. While these orbital parameters might at first suggest that HD142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features.
  •  
13.
  • Danilovich, Taissa, 1987, et al. (author)
  • Chemical tracers of a highly eccentric AGB–main-sequence star binary
  • 2024
  • In: Nature Astronomy. - 2397-3366.
  • Journal article (peer-reviewed)abstract
    • Binary interactions have been proposed to explain a variety of circumstellar structures seen around evolved stars, including asymptotic giant branch (AGB) stars and planetary nebulae. Studies resolving the circumstellar envelopes of AGB stars have revealed spirals, disks and bipolar outflows, with shaping attributed to interactions with a companion. Here we use a combined chemical and dynamical analysis to reveal a highly eccentric and long-period orbit for W Aquilae, a binary system containing an AGB star and a main-sequence companion. Our results are based on anisotropic SiN emission, the detections of irregular NS and SiC emission towards the S-type star, and density structures observed in the CO emission. These features are all interpreted as having formed during periastron interactions. Our astrochemistry-based method can yield stringent constraints on the orbital parameters of long-period binaries containing AGB stars, and will be applicable to other systems.
  •  
14.
  • Mesa, D., et al. (author)
  • VLT/SPHERE exploration of the young multiplanetary system PDS70
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Journal article (peer-reviewed)abstract
    • Context. PDS 70 is a young (5.4 Myr), nearby (similar to 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in H-alpha with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging.Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system.Methods. We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g., ANDROMEDA and PACO) to subtract the starlight.Results. We re-detect both PDS 70 b and c and confirm that PDS 70 c is gravitationally bound to the star. We estimate this second planet to be less massive than 5 M-Jup and with a T-eff around 900 K. Also, it has a low gravity with log g between 3.0 and 3.5 dex. In addition, a third object has been identified at short separation (similar to 0.12 '') from the star and gravitationally bound to the star. Its spectrum is however very blue, meaning that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We cannot however completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of a few tens of M-circle plus. Moreover, we propose a possible structure for the planetary system based on our data, and find that this structure cannot be stable on a long timescale.
  •  
15.
  • Camps, Peter, et al. (author)
  • Benchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulations
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Journal article (peer-reviewed)abstract
    • Context. Thermal emission by stochastically heated dust grains (SHGs) plays an important role in the radiative transfer (RT) problem for a dusty medium. It is therefore essential to verify that RT codes properly calculate the dust emission before studying the effects of spatial distribution and other model parameters on the simulated observables. Aims. We define an appropriate problem for benchmarking dust emissivity calculations in the context of RT simulations, specifically including the emission from SHGs. Our aim is to provide a self-contained guide for implementors of such functionality and to offer insight into the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. Methods. The benchmark problem definition includes the optical and calorimetric material properties and the grain size distributions for a typical astronomical dust mixture with silicate, graphite, and PAH components. It also includes a series of analytically defined radiation fields to which the dust population is to be exposed and instructions for the desired output. We processed this problem using six RT codes participating in this benchmark effort and compared the results to a reference solution computed with the publicly available dust emission code DustEM. Results. The participating codes implement different heuristics to keep the calculation time at an acceptable level.We study the effects of these mechanisms on the calculated solutions and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 μm ≤1000 μm. Conclusions. We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of SHGs. This work can serve as a reference for implementors of dust RT codes, and it will pave the way for a more extensive benchmark effort focusing on the RT aspects of the various codes.
  •  
16.
  • Garufi, A., et al. (author)
  • The SPHERE view of the planet-forming disk around HD 100546
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Journal article (peer-reviewed)abstract
    • Context. The mechanisms governing planet formation are not fully understood. A new era of high-resolution imaging of protoplanetary disks has recently started, thanks to new instruments such as SPHERE, GPI, and ALMA. The planet formation process can now be directly studied by imaging both planetary companions embedded in disks and their e ff ect on disk morphology. Aims. We image disk features that could be potential signs of planet-disk interaction with unprecedented spatial resolution and sensitivity. Two companion candidates have been claimed in the disk around the young Herbig Ae /Be star HD 100546. Thus, this object serves as an excellent target for our investigation of the natal environment of giant planets. Methods. We exploit the power of extreme adaptive optics operating in conjunction with the new high-contrast imager SPHERE to image HD 100546 in scattered light. We obtained the first polarized light observations of this source in the visible (with resolution as fine as 2 AU) and new H and K band total intensity images that we analyzed with the p y n p o i n t package. Results. The disk shows a complex azimuthal morphology, where multiple scattering of photons most likely plays an important role. High brightness contrasts and arm-like structures are ubiquitous in the disk. A double-wing structure (partly due to angular di ff erential imaging processing) resembles a morphology newly observed in inclined disks. Given the cavity size in the visible (11 AU), the CO emission associated to the planet candidate c might arise from within the circumstellar disk. We find an extended emission in the K band at the expected location of b. The surrounding large-scale region is the brightest in scattered light. There is no sign of any disk gap associated to b.
  •  
17.
  • Kraus, Stefan, et al. (author)
  • Planet Formation Imager (PFI) : Science vision and key requirements
  • 2016
  • In: Optical and Infrared Interferometry and Imaging V. - : SPIE. - 9781510601932 ; 9907
  • Conference paper (peer-reviewed)abstract
    • The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ∼100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
  •  
18.
  • Langlois, M., et al. (author)
  • First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Journal article (peer-reviewed)abstract
    • Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 mu m), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 mu m). Results. We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 mu m. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.
  •  
19.
  • Milli, J., et al. (author)
  • Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • Aims. Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve.Methods. We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE.Results. We report the detection of a source with a contrast of 3.6 × 10−5 in the H-band, orbiting at a projected separation of 270 milliarcsecond or 10 au, corresponding to a mass in the range 24 to 73MJup for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed.Conclusions. The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions.
  •  
20.
  • Olofsson, J., et al. (author)
  • Azimuthal asymmetries in the debris disk around HD61005 A massive collision of planetesimals?
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks off er valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. Aims. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Methods. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar-type star HD61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution. Results. Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e similar to 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter. Conclusions. With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between similar to 1000 km-sized bodies at similar to 61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star.
  •  
21.
  • Thalmann, C., et al. (author)
  • RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 828:2
  • Journal article (peer-reviewed)abstract
    • LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of similar to 50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J-band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J-band than in the RI bands.
  •  
22.
  • Wang, Jason J., et al. (author)
  • Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:6
  • Journal article (peer-reviewed)abstract
    • We present L'-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wave front sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semimajor axis of au and PDS 70 c to have a semimajor axis of au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2–3 R Jup. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 M Jup and a mean mass accretion rate between 3 × 10−7 and 8 × 10−7 M Jup/yr. For PDS 70 c, we computed a mass between 1 and 3 M Jup and mean mass accretion rate between 1 × 10−7 and 5 × 10−7 M Jup/yr. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets' SEDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view